• G. Bard ErmentroutEmail author
  • David H. Terman
Part of the Interdisciplinary Applied Mathematics book series (IAM, volume 35)


Dynamical systems theory provides a powerful tool for analyzing nonlinear systems of differential equations, including those that arise in neuroscience. This theory allows us to interpret solutions geometrically as curves in a phase space. By studying the geometric structure of phase space, we are often able to classify the types of solutions that a model may exhibit and determine how solutions depend on the model’s parameters. For example, we can often predict if a model neuron will generate an action potential, determine for which values of the parameters the model will produce oscillations, and compute how the frequency of oscillations depends on the parameters.


Periodic Solution Hopf Bifurcation Bifurcation Diagram Phase Plane Unstable Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 42.
    K. S. Cole, R. Guttman, and F. Bezanilla. Nerve excitation without threshold. Proc. Natl. Acad. Sci., 65:884–891, 1970.CrossRefGoogle Scholar
  2. 71.
    G. B. Ermentrout and N. Kopell. Frequency plateaus in a chain of weakly coupled oscillators. I. SIAM J. Math. Anal., 15(2):215–237, 1984.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 88.
    P. C. Fife and J. B. McLeod. The approach of solutions of nonlinear diffusion equations to traveling wave solutions. Arch. Ration. Mech. Anal., 65:355–361, 1977.MathSciNetCrossRefGoogle Scholar
  4. 90.
    N. Fourcaud and N. Brunel. Dynamics of the firing probability of noisy integrate-and-fire neurons. Neural Comput., 14:2057–2110, 2002.zbMATHCrossRefGoogle Scholar
  5. 98.
    S. Grossberg, G. A. Carpenter. A massively parallel architecture for a self-organizing neural pattern recognition machine. In Computer Vision, Graphics, and Image Processing, pages 54–115, Academic, New York, 1987.Google Scholar
  6. 109.
    S. Grillner and P. Wallén. Cellular bases of a vertebrate locomotor system-steering, intersegmental and segmental co-ordination and sensory control. Brain Res. Brain Res. Rev., 40:92–106, 2002.CrossRefGoogle Scholar
  7. 110.
    J. Guckenheimer. Isochrons and phaseless sets. J. Math. Biol., 1(3):259–273, 1974/75.MathSciNetCrossRefGoogle Scholar
  8. 133.
    E. M. Izhikevich. Phase equations for relaxation oscillators. SIAM J. Appl. Math., 60(5):1789–1804 (electronic), 2000.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 143.
    C. K. R. T. Jones. Stability of the traveling wave solution of the fitzhugh-nagumo equations. Trans. A.M.S., 286:431–469, 1984.zbMATHCrossRefGoogle Scholar
  10. 148.
    J. Keener and J. Sneyd. Mathematical Physiology. Springer, New York, 1998.zbMATHGoogle Scholar
  11. 162.
    N. Kopell and L. N. Howard. Plane wave solutions to reaction-diffusion equations. Studies Appl. Mat., 52:291–328, 1973.MathSciNetzbMATHGoogle Scholar
  12. 165.
    E. P. Krisner. Homoclinic orbit solutions of a one dimensional Wilson-Cowan type model. Electron. J. Differ. Equat., 107:30, 2008.MathSciNetGoogle Scholar
  13. 172.
    C. R. Laing, W. C. Troy, B. Gutkin, and G. B. Ermentrout. Multiple bumps in a neuronal model of working memory. SIAM J. Appl. Math., 63(1):62–97 (electronic), 2002.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 208.
    J. C. Neu. Large populations of coupled chemical oscillators. SIAM J. Appl. Math., 38(2):305–316, 1980.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 221.
    W. Rall. Core conductor theory and cable properties of neurons. In E. R. Kandel, editor, Handbook of Physiology, volume 1, pages 39–97. American Physiology Society, Bethesda, MD, 1977.Google Scholar
  16. 225.
    A. D. Reyes and E. E. Fetz. Effects of transient depolarizing potentials on the firing rate of cat neocortical neurons. J. Neurophysiol., 69:1673–1683, 1993.Google Scholar
  17. 248.
    D. Sigeti and W. Horsthemke. Pseudo-regular oscillations induced by external noise. J. Stat. Physics, 54:1217–1222, 1989.MathSciNetCrossRefGoogle Scholar
  18. 252.
    R. Stoop, L. A. Bunimovich, and W. H. Steeb. Generic origins of irregular spiking in neocortical networks. Biol. Cybern., 83:481–489, 2000.CrossRefGoogle Scholar
  19. 265.
    D. Terman, N. Kopell, and A. Bose. Dynamics of two mutually coupled inhibitory neurons. Phys. D, 117:241–275, 1998.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 283.
    X. J. Wang. Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J. Neurosci., 19:9587–9603, 1999.Google Scholar
  21. 74.
    G. B. Ermentrout and J. B. McLeod. Existence and uniqueness of travelling waves for a neural network. Proc. Roy. Soc. Edinburgh Sect. A, 123(3):461–478, 1993.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Dept. MathematicsUniversity of PittsburghPittsburghUSA
  2. 2.Dept. MathematicsOhio State UniversityColumbusUSA

Personalised recommendations