Skip to main content

Spatially Distributed Networks

  • Chapter
  • First Online:
Mathematical Foundations of Neuroscience

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 35))

  • 7261 Accesses

Abstract

In the previous chapters, we focused generally on single neurons, small populations of neurons, and the occasional array of neurons. With the advent of multielectrode recording, intrinsic imaging, calcium imaging, and even functional magnetic resonance imaging, it is becoming possible to explore spatiotemporal patterns of neural activity. This leads to a wealth of interesting fodder for the mathematically inclined and it is the goal of this chapter to provide some examples of this type of analysis. In Chap. 6, we looked at the propagation of action potentials down an axon; this is modeled as a partial differential equation. By looking for traveling waves, we were able to reduce the equations to a set of ordinary differential equations. When neurons are coupled together with chemical synapses, the natural form of coupling is not through partial derivatives with respect to space, but rather through nonlocal spatial interactions such as integral equations. In Sect. 8.4, we also looked at such models under the assumption that there is a single spike wave, much like an action potential. As with the partial differential equations, it is possible to look for specific forms of a solution (such as traveling waves or stationary patterns), but the resulting simplified equations do not reduce to ordinary differential equations. Thus, new techniques must be developed for solving these equations and (if desired) proving their existence and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Amari. Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern., 27:77–87, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  2. X. Chen. Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations. Adv. Differ. Equat., 2(1):125–160, 1997.

    MATH  Google Scholar 

  3. Z. Chen, B. Ermentrout, and X. J. Wang. Wave propagation mediated by GABAB synapse and rebound excitation in an inhibitory network: a reduced model approach. J. Comput. Neurosci., 5:53–69, 1998.

    Article  MATH  Google Scholar 

  4. M. A. Cohen and S. Grossberg. Absolute stability of global pattern formation and parallel memory storage by competitive neural networks. IEEE Trans. Syst. Man Cybernet., 13(5):815–826, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Compte, N. Brunel, P. S. Goldman-Rakic, and X. J. Wang. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb. Cortex, 10:910–923, 2000.

    Article  Google Scholar 

  6. S. Coombes. Waves, bumps, and patterns in neural field theories. Biol. Cybern., 93:91–108, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Cowan and D. Sharp. Neural networks and artificial intelligence. Daedalus, 117:85–121, 1988.

    Google Scholar 

  8. P. Dayan and L. F. Abbott. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Computational Neuroscience. MIT, Cambridge, MA, 2001.

    MATH  Google Scholar 

  9. A. Destexhe and A. Babloyantz. Pacemaker-induced coherence in cortical networks. Neural Comput., 3:145–154, Dec 1991.

    Article  Google Scholar 

  10. O. Diekmann. On a nonlinear integral equation arising in mathematical epidemiology. In W. Eckhaus and E. M. de Jager, editors, Differential Equations and Applications (Proceedings of Third Scheveningen Conference, Scheveningen, 1977), volume 31 of North-Holland Mathematical Studies, pages 133–140. North-Holland, Amsterdam, 1978.

    Chapter  Google Scholar 

  11. G. B. Ermentrout and J. B. McLeod. Existence and uniqueness of travelling waves for a neural network. Proc. Roy. Soc. Edinburgh Sect. A, 123(3):461–478, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Ermentrout, J. Dutta-Moscato, and D. Pinto. Elliptic bursters, depolarization block, and waves. In P. Bressloff and S. Coombes, editors, Bursting, pages 385–396. World Scientific, Hackensack, NJ, 2005.

    Google Scholar 

  13. J. M. Fuster. Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. J. Neurophysiol., 36:61–78, 1973.

    Google Scholar 

  14. A. Hertz, A. Krogh, and R. Palmer. Introduction To The Theory of Neural Computation, Volume I. Perseus Books, New York, 1991.

    Google Scholar 

  15. J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U.S.A., 79:2554–2558, 1982.

    Article  MathSciNet  Google Scholar 

  16. J. J. Hopfield. Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. U.S.A., 81:3088–3092, 1984.

    Article  Google Scholar 

  17. R. B. Hoyle. Pattern Formation: An Introduction to Methods. Cambridge University Press, Cambridge, 2006.

    Book  MATH  Google Scholar 

  18. J. P. Keener. Principles of Applied Mathematics: Transformation and Approximation. Advanced Book Program, Perseus Books, Cambridge, MA, revised edition, 2000.

    MATH  Google Scholar 

  19. Z. P. Kilpatrick and P. C. Bressloff. Spatially structured oscillations in a two-dimensional excitatory neuronal network with synaptic depression. J. Comput. Neurosci., 2009.

    Google Scholar 

  20. U. Kim, T. Bal, and D. A. McCormick. Spindle waves are propagating synchronized oscillations in the ferret LGNd in vitro. J. Neurophysiol., 74:1301–1323, 1995.

    Google Scholar 

  21. K. Kishimoto and S. Amari. Existence and stability of local excitations in homogeneous neural fields. J. Math. Biol., 7:303–318, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Kluver. Mescal and the Mechanisms of Hallucination. University of Chicago Press, Chicago, IL, 1969.

    Google Scholar 

  23. E. P. Krisner. Homoclinic orbit solutions of a one dimensional Wilson-Cowan type model. Electron. J. Differ. Equat., 107:30, 2008.

    MathSciNet  Google Scholar 

  24. C. R. Laing and W. C. Troy. PDE methods for nonlocal models. SIAM J. Appl. Dyn. Syst., 2(3):487–516 (electronic), 2003.

    Article  MathSciNet  MATH  Google Scholar 

  25. C. R. Laing, W. C. Troy, B. Gutkin, and G. B. Ermentrout. Multiple bumps in a neuronal model of working memory. SIAM J. Appl. Math., 63(1):62–97 (electronic), 2002.

    Article  MathSciNet  MATH  Google Scholar 

  26. E. K. Lambe and G. K. Aghajanian. Hallucinogen-induced UP states in the brain slice of rat prefrontal cortex: role of glutamate spillover and NR2B-NMDA receptors. Neuropsychopharmacology, 31:1682–1689, 2006.

    Article  Google Scholar 

  27. A. Loebel and M. Tsodyks. Computation by ensemble synchronization in recurrent networks with synaptic depression. J. Comput. Neurosci., 13:111–124, 2002.

    Article  Google Scholar 

  28. J. McClelland and D. Rumelhart. Parallel Distributed Processes. MIT, Cambridge, MA, 1987.

    Google Scholar 

  29. W. S. McCulloch and W. Pitts. The statistical organization of nervous activity. Biometrics, 4:91–99, 1948.

    Article  Google Scholar 

  30. J. D. Murray. Mathematical Biology. II, volume 18 of Interdisciplinary Applied Mathematics. Spatial models and biomedical applications. Springer, New York, third edition, 2003.

    Google Scholar 

  31. M. Muller and R. Wehner. Path integration in desert ants, Cataglyphis fortis. Proc. Natl. Acad. Sci. U.S.A., 85:5287–5290, 1988.

    Article  Google Scholar 

  32. D. J. Pinto and G. B. Ermentrout. Spatially structured activity in synaptically coupled neuronal networks. I. Traveling fronts and pulses. SIAM J. Appl. Math., 62(1):206–225 (electronic), 2001.

    Article  MathSciNet  MATH  Google Scholar 

  33. D. J. Pinto, S. L. Patrick, W. C. Huang, and B. W. Connors. Initiation, propagation, and termination of epileptiform activity in rodent neocortex in vitro involve distinct mechanisms. J. Neurosci., 25:8131–8140, 2005.

    Article  Google Scholar 

  34. R. Romo, C. D. Brody, A. Hernandez, and L. Lemus. Neuronal correlates of parametric working memory in the prefrontal cortex. Nature, 399:470–473, 1999.

    Article  Google Scholar 

  35. H. S. Seung, D. D. Lee, B. Y. Reis, and D. W. Tank. Stability of the memory of eye position in a recurrent network of conductance-based model neurons. Neuron, 26:259–271, 2000.

    Article  Google Scholar 

  36. M. Tsodyks, A. Uziel, and H. Markram. Synchrony generation in recurrent networks with frequency-dependent synapses. J. Neurosci., 20:RC50, 2000.

    Google Scholar 

  37. A. M. Turing. The chemical basis of morphogenesis. 1953. Bull. Math. Biol., 52:153–197, 1990.

    Google Scholar 

  38. H. R. Wilson and J. D. Cowan. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, 13:55–80, 1973.

    Article  MATH  Google Scholar 

  39. X. Wu, J. Y. Huang, and C. Zhang. Propagating waves of activity in the neocortex: what they are, what they do. Neuroscientist, 14:487–502, 2008.

    Article  Google Scholar 

  40. K. Zhang. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J. Neurosci., 16:2112–2126, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bard Ermentrout .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ermentrout, G.B., Terman, D.H. (2010). Spatially Distributed Networks. In: Mathematical Foundations of Neuroscience. Interdisciplinary Applied Mathematics, vol 35. Springer, New York, NY. https://doi.org/10.1007/978-0-387-87708-2_12

Download citation

Publish with us

Policies and ethics