Advertisement

Translucent Replication for Service Level Assurance

  • Vladimir Stantchev
  • Miroslaw Malek

Abstract

Web services are emerging as the technology of choice for providing functionality in distributed computing environments. They facilitate the integration of different systems to seamless IT supporting infrastructure for business processes. Designing a service-oriented architecture (SOA) for this task provides a set of technical services and composition techniques that offer business services from them. There are two basic aspects of a successful service offering: to provide the needed functionality and to provide the needed Quality of Service (QoS). Mission-critical applications in health care require high and stable QoS levels. The complexity of different web service platforms and integration aspects make the high assurance of such run-time related nonfunctional properties (NFPs) a nontrivial task. Experimental approaches such as architectural translucency can provide better understanding of optimized reconfigurations and assure high and stable QoS levels in mission-critical clinical environments.

Keywords

Composite Service Enterprise Resource Planning Enterprise Resource Planning System Common Object Request Broker Architecture Operating System Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Leymann. Service-oriented computing: State of the art and research challenges. Computer, 40(11):38–45, Nov. 2007.CrossRefGoogle Scholar
  2. 2.
    Nikola Milanovic and Miroslaw Malek. Current solutions for web service composition. IEEE Internet Computing, 8(6):51–59, 2004.CrossRefGoogle Scholar
  3. 3.
    Francisco Curbera. Component contracts in service-oriented architectures. Computer, 40(11):74–80, Nov. 2007.CrossRefGoogle Scholar
  4. 4.
    Vladimir Stantchev and Miroslaw Malek. Architectural Translucency in Service-oriented Architectures. IEE Proceedings -Software, 153(1):31–37, February 2006.Google Scholar
  5. 5.
    Daniel A. Menascé. QoS issues in Web services. Internet Computing, IEEE, 6(6):72–75, 2002.CrossRefGoogle Scholar
  6. 6.
    A. Brown and D.A. Patterson. Towards Availability Benchmarks: A Case Study of Software RAID Systems. Proceedings of the 2000 USENIX Annual Technical Conference, 2000.Google Scholar
  7. 7.
    Gerry Miller. The web services debate: .net vs. j2ee. Commun. ACM, 46(6):64–67, 2003.CrossRefGoogle Scholar
  8. 8.
    Y. Makripoulias, C. Makris, Y. Panagis, E. Sakkopoulos, P. Adamopoulou, M. Pontikaki, and A. Tsakalidis. Towards Ubiquitous Computing with Quality of Web Service Support. Upgrade, The European Journal for the Informatics Professional, VI(5):29–34, 2005.Google Scholar
  9. 9.
    S.S. Yau, Yu Wang, Dazhi Huang, and H.P. In. Situation-aware contract specification language for middleware for ubiquitous computing. Distributed Computing Systems, 2003. FTDCS 2003. Proceedings. The Ninth IEEE Workshop on Future Trends of, pages 93–99, 28-30 May 2003.Google Scholar
  10. 10.
    L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang. QoS-aware middleware for Web services composition. IEEE Transactions on Software Engineering, 30(5):311–327, 2004.CrossRefGoogle Scholar
  11. 11.
    G. Canfora, M. Di Penta, R. Esposito, and M.L. Villani. An approach for QoS-aware service composition based on genetic algorithms. Proceedings of the 2005 conference on Genetic and evolutionary computation, pages 1069–1075, 2005.Google Scholar
  12. 12.
    A. Solberg, S. Amundsen, J.Ø. Aagedal, and F. Eliassen. A Framework for QoS-Aware Service Composition. Proceedings of 2nd ACM International Conference on Service Oriented Computing, 2004.Google Scholar
  13. 13.
    Y. Tokairin, K. Yamanaka, H. Takahashi, T. Suganuma, and N. Shiratori. An effective QoS control scheme for ubiquitous services based on context information management. cec-eee, 00:619–625, 2007.Google Scholar
  14. 14.
    Svend Frolund and Jari Koistinen. Quality of services specification in distributed object systems design. In COOTS’98: Proceedings of the 4th USENIX Conference on Object-Oriented Technologies and Systems (COOTS), pages 1–1, Berkeley, CA, USA, 1998. USENIX Assoc.Google Scholar
  15. 15.
    H. Ludwig, A. Keller, A. Dan, R.P. King, and R. Franck. Web Service Level Agreement (WSLA) Language Specification. IBM Corporation, 2002.Google Scholar
  16. 16.
    V. Tosic, K. Patel, and B. Pagurek. WSOL-Web Service Offerings Language. Web Services, E-Business, and the Semantic Web: CAiSE 2002 International Workshop, WES 2002, Toronto, Canada, May 27-28, 2002: Revised Papers, 2002.Google Scholar
  17. 17.
    D.D. Lamanna, J. Skene, and W. Emmerich. SLAng: A Language for Defining Service Level Agreements. Proc. of the 9th IEEE Workshop on Future Trends in Distributed Computing Systems-FTDCS, pages 100–106, 2003.Google Scholar
  18. 18.
    A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu. Web Services Agreement Specification (WS-Agreement). Global Grid Forum GRAAP-WG, Draft, August, 2004.Google Scholar
  19. 19.
    A. Polze and L. Sha. Composite Objects: Real-Time Programming with CORBA. In Proceedings of 24th Euromicro Conference, Network Computing Workshop, Vol. II, pp.: 9971004, Vaesteras, Sweden, August 1998.CrossRefGoogle Scholar
  20. 20.
    W. Feng. Dynamic client-side scheduling in a real-time corba system. In COMPSAC, pages 332–333. IEEE Computer Society, 1999.Google Scholar
  21. 21.
    Pascal Felber, Rachid Guerraoui, and André Schiper. Replication of corba objects. In Sacha Krakowiak and Santosh K. Shrivastava, editors, Advances in Distributed Systems, volume 1752 of Lecture Notes in Computer Science, pages 254–276. Springer, 1999.Google Scholar
  22. 22.
    V. Marangozova and D. Hagimont. An infrastructure for corba component replication. In Judith M. Bishop, editor, Component Deployment, volume 2370 of Lecture Notes in Computer Science, pages 222–232. Springer, 2002.Google Scholar
  23. 23.
    M. Werner. Replikation in CORE. Bericht an das Graduiertenkolleg "Kommunikationsbasierte Systeme", Oct 1996.Google Scholar
  24. 24.
    Pascal Felber and Priya Narasimhan. Reconciling replication and transactions for the end-toend reliability of corba applications. In Meersman and Tari, pages 737–754.Google Scholar
  25. 25.
    Pierre-Charles David and Thomas Ledoux. An infrastructure for adaptable middleware. In Meersman and Tari , pages 773–790.Google Scholar
  26. 26.
    Sebastian Gutierrez-Nolasco and Nalini Venkatasubramanian. A reflective middleware framework for communication in dynamic environments. In Meersman and Tari, pages 791–808.Google Scholar
  27. 27.
    Gregory Biegel, Vinny Cahill, and Mads Haahr. A dynamic proxy based architecture to support distributed java objects in a mobile environment. In Meersman and Tari, pages 809–826.Google Scholar
  28. 28.
    Sandeep Adwankar. Mobile corba. In DOA ’01: Proceedings of the Third International Symposium on Distributed Objects and Applications, page 52, Los Alamitos, CA, USA, 2001. IEEE Computer Society.Google Scholar
  29. 29.
    O. Babaoglu, A. Bartoli, V. Maverick, S. Patarin, J. Vuckovic, and H. Wu. A Framework for Prototyping J2EE Replication Algorithms.Google Scholar
  30. 30.
    Etienne Antoniutti Di Muro. A software architecture for translucent replication. In DSM ’05: Proceedings of the 2ndinternational doctoral symposium on Middleware, pages 1–5, New York, NY, USA, 2005. ACM.Google Scholar
  31. 31.
    Lei Gao, Mike Dahlin, Amol Nayate, Jiandan Zheng, and Arun Iyengar. Application specific data replication for edge services. In WWW ’03: Proceedings of the 12th international conference on World Wide Web, pages 449–460, New York, NY, USA, 2003. ACM.Google Scholar
  32. 32.
    Michael M. Swift, Brian N. Bershad, and Henry M. Levy. Improving the reliability of commodity operating systems. ACM Trans. Comput. Syst., 23(1):77–110, 2005.CrossRefGoogle Scholar
  33. 33.
    Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric A. Brewer, and Paul Gauthier. Cluster-based scalable network services. In SOSP ’97: Proceedings of the sixteenth ACM symposium on Operating systems principles, pages 78–91, New York, NY, USA, 1997. ACM.Google Scholar
  34. 34.
    Haifeng Yu and Amin Vahdat. The costs and limits of availability for replicated services. ACM Trans. Comput. Syst., 24(1):70–113, 2006.CrossRefGoogle Scholar
  35. 35.
    A. Rosenthal. Computing the Reliability of Complex Networks. SIAM Journal on Applied Mathematics, 32(2):384–393, 1977.MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Haifeng Yu and Phillip B. Gibbons. Optimal inter-object correlation when replicating for availability. In PODC ’07: Proceedings of the twenty-sixth annual ACM symposium on Principles of distributed computing, pages 254–263, New York, NY, USA, 2007. ACM.Google Scholar
  37. 37.
    Peter J. Denning. Acm president’s letter: What is experimental computer science? Commun. ACM, 23(10):543–544, 1980.CrossRefGoogle Scholar
  38. 38.
    M.J. Norušis and S. Inc. SPSS 11.0 Guide to Data Analysis. Prentice Hall, 2002.Google Scholar
  39. 39.
    B.D. Ripley. The R project in statistical computing. MSOR Connections. The newsletter of the LTSN Maths, Stats & OR Network, 1(1):23–25, 2001.Google Scholar
  40. 40.
    Ann T. Tai, William H. Sanders, Leon Alkalai, Savio N. Chau, and Kam S. Tso. Performability analysis of guarded-operation duration: a translation approach for reward model solutions. Perform. Eval., 56(1-4):249–276, 2004.CrossRefGoogle Scholar
  41. 41.
    Krishna R. Pattipati and Samir A. Shah. On the computational aspects of performability models of fault-tolerant computer systems. IEEE Trans. Computers, 39(6):832–836, 1990.CrossRefGoogle Scholar
  42. 42.
    Gianfranco Ciardo, Raymond A. Marie, Bruno Sericola, and Kishor S. Trivedi. Performabilty analysis using semi-markov reward processes. IEEE Trans. Computers, 39(10):1251–1264, 1990.CrossRefGoogle Scholar
  43. 43.
    Kishor S. Trivedi, Antonio Puliafito, and Dimitris Logothetis. From stochastic petri nets to markov regenerative stochastic petri nets. In Patrick W. Dowd and Erol Gelenbe, editors, MASCOTS, pages 194–198. IEEE Computer Society, 1995.Google Scholar
  44. 44.
    Bhuvan Urgaonkar, Giovanni Pacifici, Prashant Shenoy, Mike Spreitzer, and Asser Tantawi. An analytical model for multi-tier internet services and its applications. In SIGMETRICS ’05: Proceedings of the 2005 ACM SIGMETRICS international conference on Measurement and modeling of computer systems, pages 291–302, New York, NY, USA, 2005. ACM.Google Scholar
  45. 45.
    S. Kounev and A. Buchmann. Performance Modeling and Evaluation of Large-Scale J2EE Applications. Proc. of the 29th International Conference of the Computer Measurement Group (CMG) on Resource Management and Performance Evaluation of Enterprise Computing Systems-CMG2003, 2003.Google Scholar
  46. 46.
    Mohamed N. Bennani and Daniel A. Menascé. Resource allocation for autonomic data centers using analytic performance models. In ICAC ’05: Proceedings of the Second International Conference on Autonomic Computing, pages 229–240, Washington, DC, USA, 2005. IEEE Computer Society.Google Scholar
  47. 47.
    Daniel A. Menascé, Larry W. Dowdy, and Virgílio A.F. Almeida. Performance by Design: Computer Capacity Planning By Example. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2004.Google Scholar
  48. 48.
    Daniel A. Menascé, Virgílio A. F. Almeida, Rudolf Riedi, Flávia Ribeiro, Rodrigo Fonseca, and Jr. Wagner Meira. In search of invariants for e-business workloads. In EC ’00: Proceedings of the 2nd ACM conference on Electronic commerce, pages 56–65, New York, NY, USA, 2000. ACM.Google Scholar
  49. 49.
    Daniel A. Menascé and Virgílio A. F. Almeida. Scaling for e-business. Prentice Hall PTR Upper Saddle River, NJ, 2000.Google Scholar
  50. 50.
    Daniel A. Menascé, Virgílio A.F. Almeida, and Larry W. Dowdy. Capacity Planning and Performance Modeling: From Mainframes to Client-Server Systems.Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1999.Google Scholar
  51. 51.
    Daniel Villela, Prashant Pradhan, and Dan Rubenstein. Provisioning servers in the application tier for e-commerce systems. ACM Transactions on Internet Technology (TOIT), 7(1):7, 2007.CrossRefGoogle Scholar
  52. 52.
    S. Ranjan, J. Rolia, H. Fu, and E. Knightly. QoS-driven server migration for Internet data centers. Quality of Service, 2002. Tenth IEEE International Workshop on, pages 3–12, 2002.Google Scholar
  53. 53.
    A. Kamra, V. Misra, and EM Nahum. Yaksha: a self-tuning controller for managing the performance of 3-tiered Web sites. Quality of Service, 2004. IWQOS 2004. Twelfth IEEE International Workshop on, pages 47–56, 2004.Google Scholar
  54. 54.
    J.A. Rolia, K.C. Sevcik, et al. The Method of Layers. IEEE Transactions on Software Engineering, 21(8):689–700, 1995.CrossRefGoogle Scholar
  55. 55.
    E.D. Lazowska, J. Zahorjan, G.S. Graham, and K.C. Sevcik. Quantitative system performance: computer system analysis using queueing network models. Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 1984.Google Scholar
  56. 56.
    C.M. Woodside and G. Raghunath. General Bypass Architecture for High-Performance Distributed Applications. Proceedings of the Sixth IFIP WG6. 3 Conference on Performance of Computer Networks: Data Communications and their Performance, pages 51–65, 1996.Google Scholar
  57. 57.
    Roy Gregory Franks. Performance analysis of distributed server systems. PhD thesis, Ottawa, Ont., Canada, Canada, 2000. Adviser-C. Murray Woodside.Google Scholar
  58. 58.
    J. Xu, A. Oufimtsev, M. Woodside, and L. Murphy. Performance modeling and prediction of enterprise JavaBeans with layered queuing network templates. ACM SIGSOFT Software Engineering Notes, 31(2), 2005.Google Scholar
  59. 59.
    Louis P. Slothouber. A model of web server performance. In Proceedings of the Fifth International World Wide Web Conference, 1996.Google Scholar
  60. 60.
    R. Doyle, J. Chase, O. Asad, W. Jin, and A. Vahdat. Model-Based Resource Provisioning in a Web Service Utility. Proc. of the 4th USENIX Symp. on Internet Technologies and Systems.Google Scholar
  61. 61.
    Abhishek Chandra, Weibo Gong, and Prashant Shenoy. Dynamic resource allocation for shared data centers using online measurements. In SIGMETRICS ’03: Proceedings of the 2003 ACM SIGMETRICS international conference on Measurement and modeling of computer systems, pages 300–301, New York, NY, USA, 2003. ACM.Google Scholar
  62. 62.
    A. Chandra, P. Goyal, and P. Shenoy. Quantifying the Benefits of Resource Multiplexing in On-Demand Data Centers. Proceedings of the First Workshop on Algorithms and Architectures for Self-Managing Systems, 2003.Google Scholar
  63. 63.
    B. Urgaonkar and P. Shenoy. Cataclysm: Handling Extreme Overloads in Internet Services. Proceedings of the 23rd Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC), 2004.Google Scholar
  64. 64.
    R. Levy, J. Nagarajarao, G. Pacifici, A. Spreitzer, A. Tantawi, and A. Youssef. Performance management for cluster based Web services. Integrated Network Management, IFIP/IEEE Eighth International Symposium on, pages 247–261, 2003.Google Scholar
  65. 65.
    Tarek F. Abdelzaher, Kang G. Shin, and Nina Bhatti. Performance guarantees for web server end-systems: A control-theoretical approach. IEEE Transactions on Parallel and Distributed Systems, 13(1):80–96, 2002.CrossRefGoogle Scholar
  66. 66.
    Daniel A. Menascé. Web server software architectures. Internet Computing, IEEE, 7(6):78– 81, 2003.CrossRefGoogle Scholar
  67. 67.
    G. Bolch, S. Greiner, H. de Meer, and K.S. Trivedi. Queueing networks and Markov chains: modeling and performance evaluation with computer science applications. Wiley-Interscience New York, NY, USA, 1998.MATHGoogle Scholar
  68. 68.
    Vladimir Stantchev, Trung Dang Hoang, Tino Schulz, and Ilja Ratchinski. Optimizing clinical processes with position-sensing. IT Professional, 10(2):31–37, 2008.CrossRefGoogle Scholar
  69. 69.
    Vladimir Stantchev and Christian Schröpfer. Techniques for service level enforcement in web-services based systems. In The 10th International Conference on Information Integration and Web-based Applications and Services (iiWAS2008),New York, NY, USA, 11 2008. ACM.Google Scholar
  70. 70.
    Robert Meersman and Zahir Tari, editors. On the Move to Meaningful Internet Systems, Confederated International Conferences DOA, CoopIS and ODBASE 2002, Irvine, California, USA, Proceedings, volume 2519 of Lecture Notes in Computer Science. Springer, 2002.Google Scholar

Copyright information

© Springer-Verlag US 2009

Authors and Affiliations

  1. 1.International Computer Science InstituteBerkeleyCalifornia
  2. 2.Humboldt-UniversityGermany

Personalised recommendations