Rest-Frame UV and Visible Properties of Early Type Galaxies at 1 < z < 2

  • Patrick McCarthy
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP)


Massive early-type galaxies at intermediate redshift provide a unique perspective on star formation at early times. The rest-frame UV spectra of passively evolving systems provide constraints on the formation redshift and abundances for the oldest stars at a time when the universe was roughly 1/3 its present age. The passive galaxies have spectra characteristic of F stars with strong absorption from MgII, MgI and FeII. Best fitting ages are in the 1-3Gyr range and models with solar or super-solar abundances are preferred. These properties point towards an early formation epoch and rapid down-sizing in the star formation rate.


Star Formation High Redshift Stellar Mass Star Formation Rate Composite Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, R. G., Glazebrook, K., McCarthy, P., et al. 2004, AJ, 127, 2455Google Scholar
  2. Bell, E. F., et al. 2004, ApJ, 608, 752Google Scholar
  3. Cimatti, A., et al. 2002, A&A, 381, L68Google Scholar
  4. Cowie, L. L, Songaila, A., Hu, E., & Cohen, J. G. 1996, AJ, 112, 839Google Scholar
  5. Dickinson, M., et al. 2007, ApJ, in pressGoogle Scholar
  6. Dunlop, J., Peacock, J., Spinrad, H., Dey, A., Jimenez, R., et al. 1996, Nature 381, 581Google Scholar
  7. Eggen, O., Lynden-Bell, D., & Sandage, A. 1962, ApJ, 136, 748Google Scholar
  8. Eisenstein, D., Hogg, D., Fukugita, M., et al. 2003, ApJ, 585, 694Google Scholar
  9. Faber, S., et al. 2007, ApJ, 665, 265Google Scholar
  10. Heavens, A., Panter, B., Jimenez, R., & Dunlop, J. 2004, Nature, 428, 625Google Scholar
  11. Hopkins, A., M. 2004, ApJ, 615, 209Google Scholar
  12. Houck, J., et al. 2005, ApJ, 622, L105Google Scholar
  13. Juneau, S., et al. 2005, ApJ, 619, L135Google Scholar
  14. Kauffmann, G., Heckman, T., White, S. D. M., Charlot, S., Tremonti, C., et al. 2003, MNRAS, 341, 33Google Scholar
  15. Le Borgne, D., Abraham, R., Daniel, K., McCarthy, P., et al., 2006, ApJ,642, 48Google Scholar
  16. Madau, P., et al. 1996, MNRAS, 283, 1388Google Scholar
  17. McCarthy, P., Le Borgne, D., et al. 2005, ApJ, 614, L9Google Scholar
  18. McCarthy, P., Yan, H.-J., Abraham, R., Mentuch, E., & Glazebrook, K. 2007, ApJ, 664, L17Google Scholar
  19. Pettini, M., Shapley, A. E., Steidel, C. C., Cuby, J-.G., et al. 2001, ApJ,554, 981Google Scholar
  20. Searle, L., & Zinn, R. 1978, ApJ, 225, 357Google Scholar
  21. Stanford, S. A., et al. 2006, ApJ, 646, L13Google Scholar
  22. Yan, L., et al. 2007, ApJ, 658, 778Google Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  1. 1.Carnegie ObservatoriesPasadenaUSA

Personalised recommendations