Advertisement

The Emergence of Fermions and The E11 Content

  • François Englert
  • Laurent Houart
Conference paper

Abstract

Claudio’s warm and endearing personality adds to our admiration for his achievements in physics a sense of friendliness. His constant interest in fundamental questions motivated the following presentation of our attempt to understand the nature of fermions. This problem is an essential element of the quantum world and might be related to the quest for quantum gravity. We shall review how space-time fermions can emerge out of bosons in string theory and how this fact affects the extended Kac-Moody approach to the M-theory project.

Keywords

Partition Function Open String High Energy Phys Closed String Dynkin Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angelantonj, C., Sagnotti, A.: Open strings. Phys. Rept. 371, 1–150 (2002); Erratum-ibid. 376, 339–405 (2003). arXiv: hep-th/0204089, and references therein.MATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Bergshoeff, E.A., De Baetselier, I., Nutma, T.A.: E 11 and the embedding tensor. J. High Energy Phys. 0709, 047 (2007). arXiv:0705.1304 [hep-th].CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Casher, A., Englert, F., Nicolai, H., Taormina, A.: Consistent superstrings as solutions of the D = 26 bosonic string theory. Phys. Lett. B162, 121 (1985).ADSMathSciNetGoogle Scholar
  4. 4.
    Chattaraputi, A., Englert, F., Houart, L., Taormina, A.: The bosonic mother of fermionic D-branes. J. High Energy Phys. 0209, 037 (2002). arXiv:hep-th/0207238.CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Cremmer, E., Julia, B.: The N = 8 supergravity theory. 1. The lagrangian. Phys. Lett. B80, 48 (1978).ADSGoogle Scholar
  6. 6.
    Cremmer, E., Julia, B.: The SO(8) supergravity. Nucl. Phys. B159, 141 (1979).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Cremmer, E., Julia, B., Scherk, J.: Supergravity theory in 11 dimensions. Phys. Lett. B76, 409 (1978).ADSGoogle Scholar
  8. 8.
    Cremmer, E., Scherk, J., Ferrara, S.: SU(4) invariant supergravity theory. Phys. Lett. B74, 61 (1978).ADSGoogle Scholar
  9. 9.
    Cremmer, E., Julia, B., Lu, H., Pope, C.N.: Higher-dimensional origin of D = 3 coset symmetries. (1999) (unpublished). arXiv:hep-th/9909099.Google Scholar
  10. 10.
    Damour, T., Henneaux, M.: E 10, BE 10 and arithmetical chaos in superstring cosmology. Phys. Rev. Lett. 86, 4749 (2001). arXiv:hep-th/0012172.CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Damour, T., Henneaux, M., Julia, B., Nicolai, H.: Hyperbolic Kac-Moody algebras and chaos in Kaluza-Klein models. Phys. Lett. B509, 323 (2001). arXiv: hep-th/0103094.ADSMathSciNetGoogle Scholar
  12. 12.
    Damour, T., de Buyl, S., Henneaux, M., Schomblond, C.: Einstein billiards and overextensions of finite-dimensional simple Lie algebras. J. High Energy Phys. 08, 030 (2002). arXiv:hep-th/0206125.CrossRefADSGoogle Scholar
  13. 13.
    Damour, T., Henneaux, M., Nicolai, H.: E 10 and a ‘small tension expansion’ of M theory. Phys. Rev. Lett. 89, 221601 (2002). arXiv:hep-th/0207267.CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Damour, T., Henneaux, M., Nicolai, H.: Cosmological billiards. Class. Quant. Grav. 20, R145 (2003). arXiv:hep-th/0212256.MATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    de Wit, B., Nicolai, H., Samtleben, H.: Gauged supergravities, tensor hierarchies, and M-theory. J. High Energy Phys. 0802, 044 (2008). arXiv:0801.1294 [hep-th].CrossRefGoogle Scholar
  16. 16.
    Englert, F., Houart, L.: \({\cal G}^{</Para> <Para>}\) Invariant formulation of gravity and M-theories: exact BPS solutions. J. High Energy Phys. 0401, 002 (2004). arXiv: hep-th/0311255.CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Englert, F., Houart, L.: \({\cal G}^{</Para> <Para>}\) Invariant formulation of gravity and M-theories: Exact intersecting BPS solutions. J. High Energy Phys. 0405, 059 (2004). arXiv: hep-th/0405082.CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Englert, F., Nicolai, H., Schellekens, A.N.: Superstrings from 26 dimensions. Nucl. Phys. 274, 315 (1986).CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Englert, F., Houart, L., Taormina, A.: Brane fusion in the bosonic string and the emergence of fermionic strings. J. High Energy Phys. 0108, 013 (2001). arXiv:hep-th/0106235.CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Englert, F., Houart, L., Taormina, A., West, P.: The symmetry of M-theories. J. High Energy Phys. 0309, 020 (2003). arXiv: hep-th/0304206.CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Englert, F., Henneaux, M., Houart, L.: From very-extended to overextended gravity and M-theories. J. High Energy Phys. 0502, 070 (2005). arXiv: hep-th/0412184.CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Englert, F., Houart, L., Kleinschmidt, A., Nicolai, H., Tabti, N.: An E 9 multiplet of BPS states. J. High Energy Phys. 0705, 065 (2007). arXiv: hep-th/0703285.CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Ferrara, S., Scherk, J., Zumino, B.: Algebraic properties of extended supergravity theories. Nucl. Phys. B121, 393 (1977).CrossRefADSGoogle Scholar
  24. 24.
    Gaberdiel, M.R., Olive, D.I., West, P: A class of Lorentzian Kac-Moody algebras. Nucl. Phys. B645, 403 (2002). arXiv:hep-th/0205068.CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Goldhaber, A.S.: Spin and statistic connection for charge-monopole composites, Phys. Rev. Lett. 36, 1122 (1976).CrossRefADSGoogle Scholar
  26. 26.
    Hasenfratz, P., 't Hooft, G.: A Fermion-Boson puzzle in a Gauge theory. Phys. Rev. Lett. 36, 1119 (1976).CrossRefADSGoogle Scholar
  27. 27.
    Jackiw, R., Rebbi, C.: Spin from isospin in a gauge theory. Phys. Rev. Lett. 36, 1116 (1976).CrossRefADSGoogle Scholar
  28. 28.
    Julia, B.: Infinite Lie algebras in physics. Invited talk given at Johns Hopkins Workshop on Current Problems in Particle Theory, Baltimore, MD, May 25–27, (1981).Google Scholar
  29. 29.
    Julia, B.: Group disintegrations. Lecture in Applied Mathematics, Vol. 21 (1985) AMS-SIAM.Google Scholar
  30. 30.
    Klebanov, I.R., Tseytlin, A.A.: D-branes and dual gauge theories in type 0 strings. Nucl. Phys. B546, 155 (1999). arXiv:hep-th/9811035.CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    Kleinschmidt, A., Schnakenburg, I., West, P.: Very-extended Kac-Moody algebras and their interpretation at low levels. Class. Quant. Grav. 21, 2493 (2004). arXiv:hep-th/0309198.MATHCrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Lambert, N., West, P.: Coset symmetries in dimensionally reduced bosonic string theory. Nucl. Phys. B615, 117 (2001). arXiv:hep-th/0107209.CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Narain, K.: New heteroric string theories in uncompactified dimensions <10. Phys. Lett. B169, 41 (1986).ADSMathSciNetGoogle Scholar
  34. 34.
    Nicolai, H., Fischbacher, T.: Low level representations for E 10 and E 11. Published in: Kac-Moody Lie algebra and related topics, eds. N. Sthanumoorthy and K.C. Misra, Contempary Mathematics 343, American Mathematical Society, 2004. arXiv: hep-th/0301017.Google Scholar
  35. 35.
    Nutma, T.: Software SimpLie. http://strings.fmns.rug.nl/SimpLie/.
  36. 36.
    Polchinski, J.: String Theory, Vol. 1. Cambridge University Press, Cambridge (1998).CrossRefGoogle Scholar
  37. 37.
    Polchinski, J.: String Theory, Vol. 2. Cambridge University Press, Cambridge (1998).CrossRefGoogle Scholar
  38. 38.
    Riccioni, F., West, P.: Dual fields and E 11. Phys. Lett. B645, 286 (2007). arXiv:hep-th/0612001.ADSMathSciNetGoogle Scholar
  39. 39.
    Riccioni, F., West, P.: The E 11 origin of all maximal supergravities. J. High Energy Phys. 0707, 063 (2007). arXiv:0705.0752 [hep-th].CrossRefADSMathSciNetGoogle Scholar
  40. 40.
    Schwarz, J.H., West, P.: Symmetries and transformations of chiral N = 2 D = 10 supergravity. Phys. Lett. B126, 301 (1983).ADSMathSciNetGoogle Scholar
  41. 41.
    West, P.: E 11 and M theory. Class. Quant. Grav. 18, 4443 (2001). arXiv:hep-th/0104081.MATHCrossRefADSGoogle Scholar
  42. 42.
    West, P: Very extended E 8 and A 8 at low levels, gravity and supergravity. Class. Quant. Grav. 20, 2393 (2003). arXiv: hep-th/0212291.MATHCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  1. 1.Service de Physique Théorique and The International Solvay InstitutesUniversité Libre de BruxellesSpain

Personalised recommendations