Advertisement

Sources for Chern-Simons theories

  • José D. Edelstein
  • Jorge Zanelli
Conference paper

The coupling between Chern-Simons Theories and matter sources defined by branes of different dimensionalities is examined. It is shown that the standard coupling to membranes, such as the one found in supergravity or in string theory, does not operate in the same way for CS theories; the only p-branes that naturally couple seem to be those with p = 2n; these p-branes break the gauge symmetry (and supersymmetry) in a controlled and sensible manner.

Keywords

Topological Defect Killing Spinor Invariant Tensor Simons Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hassaïne, M., Troncoso R., Zanelli, J.: Eleven-dimensional supergravity as a gauge theory for the M-algebra. Phys. Lett. B 596, 132 (2004)ADSGoogle Scholar
  2. 2.
    Bandos, I.A., de Azcárraga, J.A., Izquierdo, J.M., Lukierski, J.: BPS states in M-theory and twistorial constituents. Phys. Rev. Lett. 86, 4451 (2001)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Bandos, I.A., de Azcárraga, J.A., Izquierdo, J.M., Picon, M., Varela, O.: BPS preons, generalized holonomies and 11D supergravities. Phys. Rev. D 69, 105010 (2004)ADSGoogle Scholar
  4. 4.
    Gran, U., Gutowski, J., Papadopoulos, G., Roest, D.: N = 31, D = 11. JHEP 0702, 043 (2007)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Teitelboim, C.: Quantum mechanics of the gravitational field. Phys. Rev. D 25, 3159 (1982)ADSMathSciNetGoogle Scholar
  6. 6.
    Teitelboim, C.: Gauge invariance for extended objects. Phys. Lett. B 167, 63 (1986)ADSMathSciNetGoogle Scholar
  7. 7.
    Henneaux, M., Teitelboim, C.: p-Form Electrodynamics. Found. Phys. 16, 593 (1986)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Zanelli, J.: Lecture notes on Chern–Simons (super-)gravities. Second edition (February 2008) (unpublished). arXiv:hep-th/0502193Google Scholar
  9. 9.
    Edelstein, J.D., Zanelli, J.: (Super-)gravities of a different sort. J. Phys. Conf. Ser. 33, 83 (2006)CrossRefGoogle Scholar
  10. 10.
    Hull, C.M., Townsend, P.K.: Unity of superstring dualities. Nucl. Phys. B 438, 109 (1995)CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Witten, E.: String theory dynamics in various dimensions. Nucl. Phys. B 443, 85 (1995)CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Troncoso, R., Zanelli, J.: New gauge supergravity in seven and eleven dimensions. Phys. Rev. D 58, 101703 (1998)ADSMathSciNetGoogle Scholar
  13. 13.
    Horava, P., Witten, E.: Heterotic and type I string dynamics from eleven dimensions. Nucl. Phys. B 460, 506 (1996)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Witten, E.: On flux quantization in M-theory and the effective action. J. Geom. Phys. 22, 1 (1997)MATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Horava, P.: M-theory as a holographic field theory. Phys. Rev. D 59, 046004 (1999)ADSMathSciNetGoogle Scholar
  16. 16.
    Townsend, P.K.: P-brane democracy (unpublished). arXiv:hep-th/9507048Google Scholar
  17. 17.
    Hatsuda, M., Sakaguchi, M.: Wess–Zumino term for the AdS superstring and generalized Inonu–Wigner contraction. Prog. Theor. Phys. 109, 853 (2003)MATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    de Azcárraga, J.A., Izquierdo, J.M., Picón, M., Varela, O.: Generating Lie and gauge free differential (super)algebras by expanding Maurer–Cartan forms and Chern–Simons supergravity. Nucl. Phys. B 662, 185 (2003)CrossRefADSGoogle Scholar
  19. 19.
    de Azcárraga, J.A., Izquierdo, J.M., Picón, M., Varela, O.: Expansions of algebras and superalgebras and some applications. Int. J. Theor. Phys. 46, 2738 (2007)MATHCrossRefGoogle Scholar
  20. 20.
    Edelstein, J.D., Hassaïne, M., Troncoso R., Zanelli, J.: Lie-algebra expansions, Chern–Simons theories and the Einstein–Hilbert Lagrangian. Phys. Lett. B 640, 278 (2006)ADSGoogle Scholar
  21. 21.
    Hassaïne, M., Romo, M.: Local supersymmetric extensions of the Poincare and AdS invariant gravity. JHEP 0806, 018 (2008)CrossRefADSGoogle Scholar
  22. 22.
    Witten, E., Olive, D.I.: Supersymmetry algebras that include topological charges. Phys. Lett. B 78, 97 (1978)ADSGoogle Scholar
  23. 23.
    Bañados, M.: The linear spectrum of OSp(32|1) Chern–Simons supergravity in eleven dimensions. Phys. Rev. Lett. 88, 031301 (2002)CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Mišković, O., Troncoso, R., Zanelli, J.: Canonical sectors of 5d Chern–Simons theories. Phys. Lett. B 615, 277 (2005)ADSGoogle Scholar
  25. 25.
    Zanelli, J.: Uses of Chern–Simons actions. In: Edelstein, J.D., Grandi, N., Núñez, C., Schvellinger, M. (eds.) Ten years of AdS/CFT, pp. 115–129. American Institute of Physics, New York (2008)Google Scholar
  26. 26.
    Dunne, G.V., Jackiw, R., Trugenberger, C.A.: Topological (Chern–Simons) quantum mechanics. Phys. Rev. D 41, 661 (1990)ADSMathSciNetGoogle Scholar
  27. 27.
    Mora, P., Nishino, H.: Fundamental extended objects for Chern–Simons supergravity. Phys. Lett. B 482, 222 (2000)ADSMathSciNetGoogle Scholar
  28. 28.
    Mora, P.: Chern–Simons supersymmetric branes. Nucl. Phys. B 594, 229 (2001)CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Jackiw R., Templeton, S.: How superrenormalizable interactions cure their infrared divergences. Phys. Rev. D 23, 2291 (1981)ADSGoogle Scholar
  30. 30.
    Schonfeld, J.F.: A mass term for three-dimensional gauge fields. Nucl. Phys. B 185, 157 (1981)CrossRefADSGoogle Scholar
  31. 31.
    Anabalón, A., Willison, S., Zanelli, J.: General relativity from a gauged WZW term. Phys. Rev. D 75 024009 (2007)ADSGoogle Scholar
  32. 32.
    Anabalón, A., Willison, S., Zanelli, J.: The Universe as a topological defect. Phys. Rev. D 77 044019 (2008)ADSGoogle Scholar
  33. 33.
    Bagger J., Lambert, N.: Gauge symmetry and supersymmetry of multiple M2-branes. Phys. Rev. D 77, 065008 (2008)ADSMathSciNetGoogle Scholar
  34. 34.
    Bañados, M., Teitelboim, C., Zanelli, J.: Dimensionally continued black holes. Phys. Rev. D 49 975 (1994)ADSGoogle Scholar
  35. 35.
    Mišković, O., Zanelli, J.: Couplings between Chern-Simons gravities and 2p-branes. To appear (2009) (unpublished)Google Scholar
  36. 36.
    Aros, R., Martínez, C., Troncoso, R., Zanelli, J.: Supersymmetry of gravitational ground states. JHEP 0205, 020 (2002)CrossRefADSGoogle Scholar
  37. 37.
    Edelstein, J.D., Zanelli, J.: In progressGoogle Scholar
  38. 38.
    Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351 (1989)MATHCrossRefADSMathSciNetGoogle Scholar
  39. 39.
    Bar-Natan, D., Witten, E.: Perturbative expansion of Chern–Simons theory with noncompact gauge group. Commun. Math. Phys. 141, 423 (1991)MATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  1. 1.Department of Particle Physics and IGFAEUniversity of Santiago de CompostelaSpain

Personalised recommendations