Skip to main content

Black Hole Entropy and the Problem of Universality

  • Conference paper
  • First Online:
Book cover Quantum Mechanics of Fundamental Systems: The Quest for Beauty and Simplicity

To derive black hole thermodynamics in any quantum theory of gravity, one must introduce constraints that ensure that a black hole is actually present. For a large class of black holes, the imposition of such “horizon constraints” allows the use of conformal field theory methods to compute the density of states, reproducing the correct Bekenstein-Hawking entropy in a nearly model-independent manner. This approach may explain the “universality” of black hole entropy, the fact that many inequivalent descriptions of quantum states all seem to give the same thermodynamic predictions. It also suggests an elegant picture of the relevant degrees of freedom, as Goldstone-boson-like excitations arising from symmetry breaking by a conformal anomaly induced by the horizon constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. D. Bekenstein, Phys. Rev. D7 (1973) 2333.

    ADS  MathSciNet  Google Scholar 

  2. S. W. Hawking, Nature 248 (1974) 30.

    Article  ADS  Google Scholar 

  3. L. Bombelli, R. K. Koul, J. Lee, and R. Sorkin, Phys. Rev. D34 (1986) 373.

    ADS  MathSciNet  Google Scholar 

  4. G. 't Hooft, Nucl. Phys. B 256 (1985) 727.

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Strominger and C. Vafa, Phys. Lett. B379 (1996) 99, hep-th/9601029.

    ADS  MathSciNet  Google Scholar 

  6. A. W. Peet, Class. Quant. Grav. 15 (1998) 3291, hep-th/9712253.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. S. D. Mathur, Class. Quant. Grav. 23 (2006) R115, hep-th/0510180.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, Phys. Rept. 323 (2000) 183, hep-th/9905111.

    Article  ADS  MathSciNet  Google Scholar 

  9. K. Skenderis, Lect. Notes Phys. 541 (2000) 325, hep-th/9901050.

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Ashtekar, J. Baez, A. Corichi, and K. Krasnov, Phys. Rev. Lett. 80 (1998) 904, gr-qc/9710007.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. E. R. Livine and D. R. Terno, Nucl. Phys. B 741 (2006) 131, gr-qc/0508085.

    Article  ADS  MathSciNet  Google Scholar 

  12. J. Manuel Garcia-Islas, “BTZ black hole entropy: a spin foam model description,” Class. Quant. Grav. 25 (2008) 245001, arXiv:0804.2082 [gr-qc].

    Article  ADS  Google Scholar 

  13. V. P. Frolov and D. V. Fursaev, Phys. Rev. D56 (1997) 2212, hep-th/9703178.

    ADS  MathSciNet  Google Scholar 

  14. S. Ryu and T. Takayanagi, Phys. Rev. Lett. 96 (2006) 181602, hep-th/0603001.

    Article  ADS  MathSciNet  Google Scholar 

  15. D. V. Fursaev, JHEP 0609 (2006) 018, hep-th/0606184.

    Article  ADS  MathSciNet  Google Scholar 

  16. S. W. Hawking and C. J. Hunter, Phys. Rev. D59 (1999) 044025, hep-th/9808085.

    ADS  MathSciNet  Google Scholar 

  17. D. Rideout and S. Zohren, Class. Quant. Grav. 23 (2006) 6195, gr-qc/0606065.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. K. Ropotenko, “Kolmogorov–Sinai and Bekenstein–Hawking entropies,” Class. Quant. Grav. 25 (2008) 195005, arXiv:0711.3131 [gr-qc].

    Article  ADS  MathSciNet  Google Scholar 

  19. K. Goldstein, N. Iizuka, R. P. Jena, and S. P. Trivedi, Phys. Rev. D72 (2005) 124021, hep-th/0507096.

    ADS  MathSciNet  Google Scholar 

  20. P. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal Field Theory (Springer, Berlin, 1997).

    MATH  Google Scholar 

  21. J. A. Cardy, Nucl. Phys. B 270 (1986) 186.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. H. W. J. Blöte, J. A. Cardy, and M. P. Nightingale, Phys. Rev. Lett. 56 (1986) 742.

    Article  ADS  Google Scholar 

  23. S. Carlip, Class. Quant. Grav. 17 (2000) 4175, gr-qc/0005017.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. R. Dijkgraaf, J. M. Maldacena, G. W. Moore, and E. P. Verlinde, “A black hole Farey tail,” (unpublished) hep-th/0005003.

    Google Scholar 

  25. D. Birmingham, I. Sachs, and S. Sen, Int. J. Mod. Phys. D10 (2001) 833, hep-th/0102155.

    ADS  MathSciNet  Google Scholar 

  26. D. Birmingham, K. S. Gupta, and S. Sen, Phys. Lett. B 505 (2001) 191, hep-th/0102051.

    ADS  MathSciNet  Google Scholar 

  27. A. J. M. Medved, D. Martin, and M. Visser, Phys. Rev. D 70 (2004) 024009, gr-qc/0403026.

    ADS  MathSciNet  Google Scholar 

  28. S. M. Christensen and S. A. Fulling, Phys. Rev. D15 (1977) 2088.

    ADS  Google Scholar 

  29. S. P. Robinson and F. Wilczek, Phys. Rev. Lett. 95 (2005) 011303, gr-qc/0502074.

    Article  ADS  MathSciNet  Google Scholar 

  30. S. Iso, T. Morita, and H. Umetsu, Phys. Rev. D75 (2007) 124004, hep-th/0701272.

    ADS  MathSciNet  Google Scholar 

  31. S. Iso, T. Morita, and H. Umetsu, Phys. Rev. D77 (2008) 045007, arXiv:0710.0456 [hep-th].

    ADS  MathSciNet  Google Scholar 

  32. C. Teitelboim, Phys. Lett. B126 (1983) 41.

    ADS  MathSciNet  Google Scholar 

  33. A. Strominger, JHEP 02 (1998) 009, hep-th/9712251.

    Article  ADS  MathSciNet  Google Scholar 

  34. D. Birmingham, I. Sachs, and S. Sen, Phys. Lett. B424 (1998) 275, hep-th/9801019.

    ADS  MathSciNet  Google Scholar 

  35. M. Bañados, C. Teitelboim, and J. Zanelli, Phys. Rev. Lett. 69 (1992) 1849, hep-th/9204099.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. S. Carlip, Class. Quant. Grav. 12 (1995) 2853, gr-qc/9506079.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. J. D. Brown and M. Henneaux, Commun. Math. Phys. 104 (1986) 207.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. T. Regge and C. Teitelboim, Ann. Phys. 88 (1974) 286.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. S. Carlip, Living Rev. Rel. 8 (2005) 1, gr-qc/0409039.

    Google Scholar 

  40. S. Carlip, Class. Quant. Grav. 22 (2005) R85, gr-qc/0503022.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  41. F. Denef and G. W. Moore, Gen. Rel. Grav. 39 (2007) 1539, arXiv:0705.2564 [hep-th].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. A. Ashtekar, C. Beetle, and S. Fairhurst, Class. Quant. Grav. 16 (1999) L1, gr-qc/9812065.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  43. S. Carlip, “Horizon constraints and black hole entropy,” to appear in The Kerr spacetime: Rotating black holes in general relativity, edited by S. Scott, M. Visser, and D. Wiltshire (Cambridge University Press, Cambridge), gr-qc/0508071.

    Google Scholar 

  44. S. Carlip, Phys. Rev. Lett. 82 (1999) 2828, hep-th/9812013.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  45. S. Carlip, Class. Quant. Grav. 16 (1999) 3327, gr-qc/9906126.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  46. M. Cvitan, S. Pallua, and P. Prester, Phys. Rev. D 70 (2004) 084043, hep-th/0406186.

    ADS  MathSciNet  Google Scholar 

  47. O. Dreyer, A. Ghosh, and J. Wisniewski, Class. Quant. Grav. 18 (2001) 1929, hep-th/0101117.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  48. J. Koga, Phys. Rev. D 64 (2001) 124012, gr-qc/0107096.

    ADS  MathSciNet  Google Scholar 

  49. S. Carlip, Class. Quant. Grav. 22 (2005) 1303, hep-th/0408123.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  50. S. Carlip, Phys. Rev. Lett. 99 (2007) 021301, gr-qc/0702107.

    Article  ADS  MathSciNet  Google Scholar 

  51. J. H. Yoon, Phys. Lett. B 451 (1999) 296, gr-qc/0003059.

    ADS  MathSciNet  Google Scholar 

  52. C. Teitelboim, Phys. Rev. D 53 (1996) 2870, hep-th/9510180.

    ADS  MathSciNet  Google Scholar 

  53. J. D. Brown, M. Henneaux, and C. Teitelboim, Phys. Rev. D33 (1986) 319.

    ADS  MathSciNet  Google Scholar 

  54. P. G. Bergmann and A. B. Komar, Phys. Rev. Lett. 4 (1960) 432.

    Article  ADS  Google Scholar 

  55. E. Witten, Commun. Math. Phys. 121 (1989) 351.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  56. A. Ashtekar, Phys. Rev. Lett. 57 (1986) 2244.

    Article  ADS  MathSciNet  Google Scholar 

  57. R. Emparan and D. Mateos, Class. Quant. Grav. 22 (2005) 3575, hep-th/0506110.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  58. S. Carlip, Nucl. Phys. B 362 (1991) 111.

    Article  ADS  MathSciNet  Google Scholar 

  59. N. Kaloper and J. Terning, personal communication.

    Google Scholar 

  60. S. Carlip, Class. Quant. Grav. 22 (2005) 3055, gr-qc/0501033.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  61. R. Aros, M. Romo, and N. Zamorano, Phys. Rev. D75 (2007) 067501, hep-th/0612028.

    ADS  MathSciNet  Google Scholar 

  62. M. Henneaux and C. Teitelboim, Quantization of Gauge Systems (Princeton University Press, Princeton, NJ, 1992), Chapter 16.

    MATH  Google Scholar 

  63. V. P. Frolov, D. Fursaev, and A. Zelnikov, JHEP 0303 (2003) 038, hep-th/0302207.

    Article  ADS  MathSciNet  Google Scholar 

  64. R. Emparan and I. Sachs, Phys. Rev. Lett. 81 (1998) 2408, hep-th/9806122.

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Carlip .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag New York

About this paper

Cite this paper

Carlip, S. (2009). Black Hole Entropy and the Problem of Universality. In: Zanelli , J., Henneaux, M. (eds) Quantum Mechanics of Fundamental Systems: The Quest for Beauty and Simplicity. Springer, New York, NY. https://doi.org/10.1007/978-0-387-87499-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-87499-9_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-87498-2

  • Online ISBN: 978-0-387-87499-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics