Advertisement

Black Hole Entropy and the Problem of Universality

  • S. Carlip
Conference paper

To derive black hole thermodynamics in any quantum theory of gravity, one must introduce constraints that ensure that a black hole is actually present. For a large class of black holes, the imposition of such “horizon constraints” allows the use of conformal field theory methods to compute the density of states, reproducing the correct Bekenstein-Hawking entropy in a nearly model-independent manner. This approach may explain the “universality” of black hole entropy, the fact that many inequivalent descriptions of quantum states all seem to give the same thermodynamic predictions. It also suggests an elegant picture of the relevant degrees of freedom, as Goldstone-boson-like excitations arising from symmetry breaking by a conformal anomaly induced by the horizon constraints.

Keywords

Black Hole Central Charge Black Hole Entropy Conformal Weight Liouville Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. D. Bekenstein, Phys. Rev. D7 (1973) 2333.ADSMathSciNetGoogle Scholar
  2. 2.
    S. W. Hawking, Nature 248 (1974) 30.CrossRefADSGoogle Scholar
  3. 3.
    L. Bombelli, R. K. Koul, J. Lee, and R. Sorkin, Phys. Rev. D34 (1986) 373.ADSMathSciNetGoogle Scholar
  4. 4.
    G. 't Hooft, Nucl. Phys. B 256 (1985) 727.CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    A. Strominger and C. Vafa, Phys. Lett. B379 (1996) 99, hep-th/9601029.ADSMathSciNetGoogle Scholar
  6. 6.
    A. W. Peet, Class. Quant. Grav. 15 (1998) 3291, hep-th/9712253.MATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    S. D. Mathur, Class. Quant. Grav. 23 (2006) R115, hep-th/0510180.MATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, Phys. Rept. 323 (2000) 183, hep-th/9905111.CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    K. Skenderis, Lect. Notes Phys. 541 (2000) 325, hep-th/9901050.CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    A. Ashtekar, J. Baez, A. Corichi, and K. Krasnov, Phys. Rev. Lett. 80 (1998) 904, gr-qc/9710007.MATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    E. R. Livine and D. R. Terno, Nucl. Phys. B 741 (2006) 131, gr-qc/0508085.CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    J. Manuel Garcia-Islas, “BTZ black hole entropy: a spin foam model description,” Class. Quant. Grav. 25 (2008) 245001, arXiv:0804.2082 [gr-qc].CrossRefADSGoogle Scholar
  13. 13.
    V. P. Frolov and D. V. Fursaev, Phys. Rev. D56 (1997) 2212, hep-th/9703178.ADSMathSciNetGoogle Scholar
  14. 14.
    S. Ryu and T. Takayanagi, Phys. Rev. Lett. 96 (2006) 181602, hep-th/0603001.CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    D. V. Fursaev, JHEP 0609 (2006) 018, hep-th/0606184.CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    S. W. Hawking and C. J. Hunter, Phys. Rev. D59 (1999) 044025, hep-th/9808085.ADSMathSciNetGoogle Scholar
  17. 17.
    D. Rideout and S. Zohren, Class. Quant. Grav. 23 (2006) 6195, gr-qc/0606065.MATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    K. Ropotenko, “Kolmogorov–Sinai and Bekenstein–Hawking entropies,” Class. Quant. Grav. 25 (2008) 195005, arXiv:0711.3131 [gr-qc].CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    K. Goldstein, N. Iizuka, R. P. Jena, and S. P. Trivedi, Phys. Rev. D72 (2005) 124021, hep-th/0507096.ADSMathSciNetGoogle Scholar
  20. 20.
    P. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal Field Theory (Springer, Berlin, 1997).MATHGoogle Scholar
  21. 21.
    J. A. Cardy, Nucl. Phys. B 270 (1986) 186.MATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    H. W. J. Blöte, J. A. Cardy, and M. P. Nightingale, Phys. Rev. Lett. 56 (1986) 742.CrossRefADSGoogle Scholar
  23. 23.
    S. Carlip, Class. Quant. Grav. 17 (2000) 4175, gr-qc/0005017.MATHCrossRefADSMathSciNetGoogle Scholar
  24. 24.
    R. Dijkgraaf, J. M. Maldacena, G. W. Moore, and E. P. Verlinde, “A black hole Farey tail,” (unpublished) hep-th/0005003.Google Scholar
  25. 25.
    D. Birmingham, I. Sachs, and S. Sen, Int. J. Mod. Phys. D10 (2001) 833, hep-th/0102155.ADSMathSciNetGoogle Scholar
  26. 26.
    D. Birmingham, K. S. Gupta, and S. Sen, Phys. Lett. B 505 (2001) 191, hep-th/0102051.ADSMathSciNetGoogle Scholar
  27. 27.
    A. J. M. Medved, D. Martin, and M. Visser, Phys. Rev. D 70 (2004) 024009, gr-qc/0403026.ADSMathSciNetGoogle Scholar
  28. 28.
    S. M. Christensen and S. A. Fulling, Phys. Rev. D15 (1977) 2088.ADSGoogle Scholar
  29. 29.
    S. P. Robinson and F. Wilczek, Phys. Rev. Lett. 95 (2005) 011303, gr-qc/0502074.CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    S. Iso, T. Morita, and H. Umetsu, Phys. Rev. D75 (2007) 124004, hep-th/0701272.ADSMathSciNetGoogle Scholar
  31. 31.
    S. Iso, T. Morita, and H. Umetsu, Phys. Rev. D77 (2008) 045007, arXiv:0710.0456 [hep-th].ADSMathSciNetGoogle Scholar
  32. 32.
    C. Teitelboim, Phys. Lett. B126 (1983) 41.ADSMathSciNetGoogle Scholar
  33. 33.
    A. Strominger, JHEP 02 (1998) 009, hep-th/9712251.CrossRefADSMathSciNetGoogle Scholar
  34. 34.
    D. Birmingham, I. Sachs, and S. Sen, Phys. Lett. B424 (1998) 275, hep-th/9801019.ADSMathSciNetGoogle Scholar
  35. 35.
    M. Bañados, C. Teitelboim, and J. Zanelli, Phys. Rev. Lett. 69 (1992) 1849, hep-th/9204099.MATHCrossRefADSMathSciNetGoogle Scholar
  36. 36.
    S. Carlip, Class. Quant. Grav. 12 (1995) 2853, gr-qc/9506079.MATHCrossRefADSMathSciNetGoogle Scholar
  37. 37.
    J. D. Brown and M. Henneaux, Commun. Math. Phys. 104 (1986) 207.MATHCrossRefADSMathSciNetGoogle Scholar
  38. 38.
    T. Regge and C. Teitelboim, Ann. Phys. 88 (1974) 286.MATHCrossRefADSMathSciNetGoogle Scholar
  39. 39.
    S. Carlip, Living Rev. Rel. 8 (2005) 1, gr-qc/0409039.Google Scholar
  40. 40.
    S. Carlip, Class. Quant. Grav. 22 (2005) R85, gr-qc/0503022.MATHCrossRefADSMathSciNetGoogle Scholar
  41. 41.
    F. Denef and G. W. Moore, Gen. Rel. Grav. 39 (2007) 1539, arXiv:0705.2564 [hep-th].MATHCrossRefADSMathSciNetGoogle Scholar
  42. 42.
    A. Ashtekar, C. Beetle, and S. Fairhurst, Class. Quant. Grav. 16 (1999) L1, gr-qc/9812065.MATHCrossRefADSMathSciNetGoogle Scholar
  43. 43.
    S. Carlip, “Horizon constraints and black hole entropy,” to appear in The Kerr spacetime: Rotating black holes in general relativity, edited by S. Scott, M. Visser, and D. Wiltshire (Cambridge University Press, Cambridge), gr-qc/0508071.Google Scholar
  44. 44.
    S. Carlip, Phys. Rev. Lett. 82 (1999) 2828, hep-th/9812013.MATHCrossRefADSMathSciNetGoogle Scholar
  45. 45.
    S. Carlip, Class. Quant. Grav. 16 (1999) 3327, gr-qc/9906126.MATHCrossRefADSMathSciNetGoogle Scholar
  46. 46.
    M. Cvitan, S. Pallua, and P. Prester, Phys. Rev. D 70 (2004) 084043, hep-th/0406186.ADSMathSciNetGoogle Scholar
  47. 47.
    O. Dreyer, A. Ghosh, and J. Wisniewski, Class. Quant. Grav. 18 (2001) 1929, hep-th/0101117.MATHCrossRefADSMathSciNetGoogle Scholar
  48. 48.
    J. Koga, Phys. Rev. D 64 (2001) 124012, gr-qc/0107096.ADSMathSciNetGoogle Scholar
  49. 49.
    S. Carlip, Class. Quant. Grav. 22 (2005) 1303, hep-th/0408123.MATHCrossRefADSMathSciNetGoogle Scholar
  50. 50.
    S. Carlip, Phys. Rev. Lett. 99 (2007) 021301, gr-qc/0702107.CrossRefADSMathSciNetGoogle Scholar
  51. 51.
    J. H. Yoon, Phys. Lett. B 451 (1999) 296, gr-qc/0003059.ADSMathSciNetGoogle Scholar
  52. 52.
    C. Teitelboim, Phys. Rev. D 53 (1996) 2870, hep-th/9510180.ADSMathSciNetGoogle Scholar
  53. 53.
    J. D. Brown, M. Henneaux, and C. Teitelboim, Phys. Rev. D33 (1986) 319.ADSMathSciNetGoogle Scholar
  54. 54.
    P. G. Bergmann and A. B. Komar, Phys. Rev. Lett. 4 (1960) 432.CrossRefADSGoogle Scholar
  55. 55.
    E. Witten, Commun. Math. Phys. 121 (1989) 351.MATHCrossRefADSMathSciNetGoogle Scholar
  56. 56.
    A. Ashtekar, Phys. Rev. Lett. 57 (1986) 2244.CrossRefADSMathSciNetGoogle Scholar
  57. 57.
    R. Emparan and D. Mateos, Class. Quant. Grav. 22 (2005) 3575, hep-th/0506110.MATHCrossRefADSMathSciNetGoogle Scholar
  58. 58.
    S. Carlip, Nucl. Phys. B 362 (1991) 111.CrossRefADSMathSciNetGoogle Scholar
  59. 59.
    N. Kaloper and J. Terning, personal communication.Google Scholar
  60. 60.
    S. Carlip, Class. Quant. Grav. 22 (2005) 3055, gr-qc/0501033.MATHCrossRefADSMathSciNetGoogle Scholar
  61. 61.
    R. Aros, M. Romo, and N. Zamorano, Phys. Rev. D75 (2007) 067501, hep-th/0612028.ADSMathSciNetGoogle Scholar
  62. 62.
    M. Henneaux and C. Teitelboim, Quantization of Gauge Systems (Princeton University Press, Princeton, NJ, 1992), Chapter 16.MATHGoogle Scholar
  63. 63.
    V. P. Frolov, D. Fursaev, and A. Zelnikov, JHEP 0303 (2003) 038, hep-th/0302207.CrossRefADSMathSciNetGoogle Scholar
  64. 64.
    R. Emparan and I. Sachs, Phys. Rev. Lett. 81 (1998) 2408, hep-th/9806122.MATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of California at DavisUSA

Personalised recommendations