Strongly Hyperbolic Extensions of the ADM Hamiltonian

  • J. David Brown
Conference paper

The ADM Hamiltonian formulation of general relativity with prescribed lapse and shift is a weakly hyperbolic system of partial differential equations. In general weakly hyperbolic systems are not mathematically well posed. For well posedness, the theory should be reformulated so that the complete system, evolution equations plus gauge conditions, is (at least) strongly hyperbolic. Traditionally, reformulation has been carried out at the level of equations of motion. This typically destroys the variational and Hamiltonian structures of the theory. Here I show that one can extend the ADM formalism to (a) incorporate the gauge conditions as dynamical equations and (b) affect the hyperbolicity of the complete system, all while maintaining a Hamiltonian description. The extended ADM formulation is used to obtain a strongly hyperbolic Hamiltonian description of Einstein’s theory that is generally covariant under spatial diffeomorphisms and time reparametrizations, and has physical characteristics. The extended Hamiltonian formulation with 1+log slicing and gamma-driver shift conditions is weakly hyperbolic.


Gauge Condition Canonical Variable Principal Symbol Christoffel Symbol Shift Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnowitt, A., Deser, S., Misner, C.W.: The dynamics of general relativity. In: Witten, L. (ed.) Gravitation: An Introduction to Current Research, pp. 227–265. Wiley, New York (1962)Google Scholar
  2. 2.
    Baumgarte, T.W., Shapiro, S.L.: On the numerical integration of Einstein's field equations. Phys. Rev. D59, 024007 (1999)ADSMathSciNetGoogle Scholar
  3. 3.
    Brown, J.D.: Midpoint rule as a variational-symplectic integrator: Hamiltonian systems. Phys. Rev. D74, 024001 (2006)ADSGoogle Scholar
  4. 4.
    Brown, J.D.: in preparationGoogle Scholar
  5. 5.
    Brown, J.D., Lau, S.R., York, J.W.: Action and energy of the gravitational field. Ann. Phys. 297, 175–218 (2002)MATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Calabrese, G., Pullin, J., Sarbach, O., Tiglio, M.: Convergence and stability in numerical relativity. Phys. Rev. D66, 041501 (2002)ADSMathSciNetGoogle Scholar
  7. 7.
    DeWitt, B.S.: Quantum theory of gravity. 1. The canonical theory. Phys. Rev. 160 1113–1148 (1967)MATHCrossRefADSGoogle Scholar
  8. 8.
    Dirac, P.A.M.: The theory of gravitation in Hamiltonian form. Proc. R. Soc. Lond. A246, 333–343 (1958)ADSMathSciNetGoogle Scholar
  9. 9.
    Friedrich, H.: On the hyperbolicity of Einstein's and other gauge field equations. Commun. Math. Phys. 100, 525–543 (1985)MATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Gundlach, C., Martin-Garcia, J.M.: Hyperbolicity of second-order in space systems of evolution equations. Class. Quant. Grav. 23, S387–S404 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Gustafsson, B., Kreiss, H.-O., Oliger, J.: Time Dependent Problems and Difference Methods. Wiley, New York (1995)MATHGoogle Scholar
  12. 12.
    Hanson, A., Regge, T., Teitelboim, C.: Constrained Hamiltonian Systems. Accademia Nazionale Dei Lincei, Rome (1976)Google Scholar
  13. 13.
    Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. Princeton University Press, Princeton (1992)MATHGoogle Scholar
  14. 14.
    Hojman, S.A., Kuchar, K., Teitelboim, C.: Geometrodynamics Regained. Ann. Phys. 96, 88–135 (1976)MATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Kreiss, H.-O., Winicour, J.: Problems which are well-posed in a generalized sense with applications to the Einstein equations. Class. Quant. Grav. 23, S405–S420 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Lindblom, L., Scheel, M.A., Kidder, L.E., Owen, R., Rinne, O.:A new generalized harmonic evolution system. Class. Quant. Grav. 23, S447–S462 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Lindblom, L., Matthews, K.D., Rinne, O., Scheel, M.A.: Gauge drivers for the generalized harmonic Einstein equations. Phys. Rev. D77, 084001 (2008)ADSMathSciNetGoogle Scholar
  18. 18.
    Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numerica 10, 357–514 (2001)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Nagy, G., Ortiz, O.E., Reula, O.A.: Strongly hyperbolic second order Einstein's evolution equations. Phys. Rev. D70, 044012 (2004)ADSMathSciNetGoogle Scholar
  20. 20.
    Pretorius, F.: Numerical relativity using a generalized harmonic decomposition. Class. Quant. Grav. 22, 425–452 (2005)MATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Regge, T., Teitelboim, C.: Role of surface integrals in the Hamiltonian formulation of general relativity. Ann. Phys. 88, 286 (1974)MATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Reula, O.A.: Hyperbolic methods for Einstein's equations. Living Rev. Rel. 1, 3 (1998)MathSciNetGoogle Scholar
  23. 23.
    Reula, O.A.: Strongly hyperbolic systems in general relativity. gr-qc/0403007 (2004)Google Scholar
  24. 24.
    Shibata, M., Nakamura, T.: Evolution of three-dimensional gravitational waves: Harmonic slicing case. Phys. Rev. D52, 5428–5444 (1995)ADSMathSciNetGoogle Scholar
  25. 25.
    Stewart, J.M.: The Cauchy problem and the initial boundary value problem in numerical relativity. Class. Quant. Grav. 15, 2865–2889 (1998)MATHCrossRefADSGoogle Scholar
  26. 26.
    Teitelboim, C.: How commutators of constraints reflect the space-time structure. Ann. Phys. 79, 542–557 (1973)CrossRefADSGoogle Scholar
  27. 27.
    Teitelboim, C.: The Hamiltonian structure of space–time. In: Held, A. (ed.) General Relativity and Gravitation, vol. 1, pp. 195–225. Plenum, New York (1980)Google Scholar
  28. 28.
    van Meter, J.R., Baker, J.G., Koppitz, M., Choi, D.-I.: How to move a black hole without excision: Gauge conditions for the numerical evolution of a moving puncture. Phys. Rev. D73, 124011 (2006)ADSGoogle Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  1. 1.Department of PhysicsNorth Carolina State UniversityUSA

Personalised recommendations