Maximal Supersymmetric Theories and E7(7) in Light-Cone Superspace

  • Lars Brink
Conference paper


In this lecture I describe the light-cone formulation of quantum field theories especially the maximally supersymmetric ones. This is a formalism in which we keep only the physical degrees of freedom for both bosons and fermions. I show how N = 4 Yang-Mills Theory and N = 8 supergravity come out very naturally and that they look very much alike. I finally show how to implement the E7(7) symmetry for the supergravity theory. The new feature in this formulation is that all fields of the supermultiplet including the graviton transform under E7(7).


Light Cone Bianchi Identity Supergravity Theory Mill Theory Maximal Supergravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Cremmer and B. Julia, “The N=8 supergravity theory. 1. The Lagrangian,” Phys. Lett. B 80, 48 (1978).ADSGoogle Scholar
  2. 2.
    E. Cremmer and B. Julia, “The SO(8) supergravity,” Nucl. Phys. B 159, 141 (1979).CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    L. Brink, J. H. Schwarz and J. Scherk, “Supersymmetric Yang–Mills theories,” Nucl. Phys. B 121, 77 (1977).CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    F. Gliozzi, J. Scherk and D. I. Olive, “Supersymmetry, supergravity theories and the dual spinor model,” Nucl. Phys. B 122, 253 (1977).CrossRefADSGoogle Scholar
  5. 5.
    E. Cremmer, B. Julia and J. Scherk, “Supergravity theory in 11 dimensions,” Phys. Lett. B 76, 409 (1978).ADSGoogle Scholar
  6. 6.
    C. M. Hull and P. K. Townsend, “Unity of superstring dualities,” Nucl. Phys. B 438, 109 (1995) [arXiv:hep-th/9410167].CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    E. Witten, “String theory dynamics in various dimensions,” Nucl. Phys. B 443, 85 (1995) [arXiv:hep-th/9503124].CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)] [arXiv:hep-th/9711200].MATHADSMathSciNetGoogle Scholar
  9. 9.
    L. Brink, O. Lindgren and B. E. W. Nilsson, “The ultraviolet finiteness of the N = 4 Yang–Mills theory,” Phys. Lett. B 123, 323 (1983).ADSGoogle Scholar
  10. 10.
    S. Mandelstam, “Light cone superspace and the ultraviolet finiteness of the N=4 model,” Nucl. Phys. B 213, 149 (1983).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    L. Brink, O. Lindgren and B. E. W. Nilsson, “N = 4 Yang–Mills theory on the light cone,” Nucl. Phys. B 212, 401 (1983).CrossRefADSGoogle Scholar
  12. 12.
    A. K. H. Bengtsson, I. Bengtsson and L. Brink, “Cubic Interaction terms for arbitrary spin” Nucl. Phys. B 227, 31 (1983).CrossRefADSGoogle Scholar
  13. 13.
    P. A. M. Dirac, “Forms of relativistic dynamics,” Rev. Mod. Phys. 21, 392 (1949).MATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    I. Bengtsson, M. Cederwall and O. Lindgren, “Light cone actions for gravity and higher spins: some further results,” GOTEBORG-83-55.Google Scholar
  15. 15.
    I. Bengtsson, “A note on the connection between spin and statistics,” Phys. Rev. D 31, 2525 (1985).ADSMathSciNetGoogle Scholar
  16. 16.
    S. Ananth, L. Brink and P. Ramond, “Eleven-dimensional supergravity in light-cone superspace,” JHEP 0505, 003 (2005) [arXiv:hep-th/0501079].CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    S. Ananth, L. Brink, R. Heise and H. G. Svendsen, “The N = 8 supergravity Hamiltonian as a quadratic form,” Nucl. Phys. B 753, 195 (2006) [arXiv:hep-th/0607019].CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    S. Ananth, L. Brink, S. S. Kim and P. Ramond, “Non-linear realization of PSU(2,2ǀ4) on the light-cone,” Nucl. Phys. B 722, 166 (2005) [arXiv:hep-th/0505234].CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    L. Brink, M. B. Green and J. H. Schwarz, “Ten-Dimensional Supersymmetric Yang–Mills theory with SO(8) – covariant light cone superfields,” Nucl. Phys. B 223, 125 (1983).CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    S. Ananth, L. Brink and P. Ramond, “Oxidizing SuperYang–Mills from (N = 4, d = 4) to (N = 1, d = 10),” JHEP 0407, 082 (2004) [arXiv:hep-th/0405150].CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    L. Brink, S. S. Kim and P. Ramond, “E 7(7) on the light cone,” JHEP 0806, 034 (2008) [arXiv:0801.2993 [hep-th]].CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    B. de Wit and D. Z. Freedman, “On SO(8) extended supergravity,” Nucl. Phys. B 130, 105 (1977).CrossRefADSGoogle Scholar
  23. 23.
    B. de Wit, “Properties of SO(8) extended supergravity,” Nucl. Phys. B 158, 189 (1979).CrossRefADSGoogle Scholar
  24. 24.
    B. de Wit and H. Nicolai, “N = 8 supergravity,” Nucl. Phys. B 208, 323 (1982).CrossRefADSGoogle Scholar
  25. 25.
    L. Brink, S-S. Kim and P. Ramond, in preparation.Google Scholar
  26. 26.
    L. Brink and P. S. Howe, “The N = 8 supergravity in superspace,” Phys. Lett. B 88, 268 (1979).ADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  1. 1.Chalmers University of TechnologySweden

Personalised recommendations