Advertisement

Static wormholes in vacuum and gravity in diverse dimensions

  • Ricardo Troncoso
Conference paper

Static wormhole solutions in vacuum for gravity in diverse dimensions are discussed. In dimensions greater than four the theory corresponds to a particular case of the Lovelock action, so that it admits a unique AdS vacuum. One of the wormhole solutions connects two asymptotically locally AdS spacetimes so that both asymptotic regions are connected by light signals in a finite time. The Euclidean continuation of the wormhole can be seen as instanton with vanishing action, and the mass can also be obtained from a surface integral which is shown to vanish. Its stability against free scalar field perturbations is guaranteed provided the squared mass is bounded from below by a negative quantity which could be more stringent than the Breitenlohner-Freedman bound. An exact expression for the spectrum is found analytically. For nonminimal coupling, stability can also be achieved for scalar fields with slow fall-off, and three different quantizations can be carried on, being characterized by the fall-off of the scalar field, which can be fast or slow with respect to each asymptotic region. In four dimensions a static spherically symmetric wormhole solution for conformal gravity in vacuum is found, whose neck connects two static homogeneous universes of constant spatial curvature. Time runs at different rates on each side of the neck. The extension with radial electric or magnetic fields is also discussed and it turns out to have “charge without charge.” The solutions can be further generalized to the case of necks with genus greater than one. It is shown that the wormholes in vacuum generically correspond to the matching of different Einstein spacetimes at infinity by means of improper conformal transformations.

Keywords

Asymptotic Region Base Manifold Diverse Dimension Euclidean Action Conformal Gravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Einstein and N. Rosen, Phys. Rev. 48, 73 (1935).MATHCrossRefADSGoogle Scholar
  2. 2.
    C. W. Misner and J. A. Wheeler, Ann. Phys. 2, 525 (1957).MATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    G. W. Gibbons and S. W. Hawking (eds.) “Euclidean quantum gravity”, World Scientific, Singapore, (1993).Google Scholar
  4. 4.
    M. S. Morris, K. S. Thorne and U. Yurtsever, Phys. Rev. Lett. 61, 1446 (1988).CrossRefADSGoogle Scholar
  5. 5.
    M. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395 (1988).CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    M. Visser, “Lorentzian wormholes: from Einstein to Hawking”, AIP, Woodbury, NY, (1995).Google Scholar
  7. 7.
    D. Lovelock, J. Math. Phys. 12, 498 (1971).MATHGoogle Scholar
  8. 8.
    G. Dotti, J. Oliva and R. Troncoso, Phys. Rev. D 75, 024002 (2007).ADSMathSciNetGoogle Scholar
  9. 9.
    G. Dotti, J. Oliva and R. Troncoso, Phys. Rev. D 76, 064038 (2007).ADSMathSciNetGoogle Scholar
  10. 10.
    G. Dotti, J. Oliva and R. Troncoso, work in progress.Google Scholar
  11. 11.
    J. Lee and T. Parker, Bull. Am. Math. Soc. 17, 37 (1987).MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    P. Mora, R. Olea, R. Troncoso and J. Zanelli, JHEP 0406, 036 (2004) [arXiv:hep-th/0405267].CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    P. Mora, R. Olea, R. Troncoso and J. Zanelli, “Vacuum energy in odd-dimensional AdS gravity” arXiv:hep-th/0412046.Google Scholar
  14. 14.
    P. Mora, R. Olea, R. Troncoso and J. Zanelli, JHEP 0602, 067 (2006) [arXiv:hep-th/0601081].CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    T. Regge and C. Teitelboim, Ann. Phys. (NY) 88, 286 (1974).MATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    J. M. Maldacena and L. Maoz, JHEP 0402, 053 (2004).CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    D. H. Correa, J. Oliva and R. Troncoso, JHEP 08, 081 (2008) arXiv:0805.1513 [hep-th].CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    J. Crisóstomo, R. Troncoso and J. Zanelli, Phys. Rev. D 62, 084013 (2000).ADSGoogle Scholar
  19. 19.
    P. Breitenlohner and D. Z. Freedman, Phys. Lett. B 115, 197 (1982).ADSMathSciNetGoogle Scholar
  20. 20.
    P. Breitenlohner and D. Z. Freedman, Ann. Phys. 144, 249 (1982).MATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    L. Mezincescu and P. K. Townsend, Ann. Phys. 160, 406 (1985).CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    M. Henneaux, C. Martinez, R. Troncoso and J. Zanelli, Ann. Phys. 322, 824 (2007).MATHCrossRefADSMathSciNetGoogle Scholar
  23. 23.
    M. Henneaux, C. Martinez, R. Troncoso and J. Zanelli, Phys. Rev. D 65, 104007 (2002).ADSMathSciNetGoogle Scholar
  24. 24.
    M. Henneaux, C. Martinez, R. Troncoso and J. Zanelli, Phys. Rev. D 70, 044034 (2004).ADSMathSciNetGoogle Scholar
  25. 25.
    T. Hertog and K. Maeda, JHEP 0407, 051 (2004).CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    A. J. Amsel and D. Marolf, Phys. Rev. D 74, 064006 (2006) [Erratum-ibid. D 75, 029901 (2007)].ADSMathSciNetGoogle Scholar
  27. 27.
    E. Witten and S. T. Yau, Adv. Theor. Math. Phys. 3, 1635 (1999).MATHMathSciNetGoogle Scholar
  28. 28.
    N. Arkani-Hamed, J. Orgera and J. Polchinski, JHEP 0712, 018 (2007).CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    J. Saavedra, R. Troncoso and J. Zanelli, J. Math. Phys. 42, 4383 (2001).MATHCrossRefADSMathSciNetGoogle Scholar
  30. 30.
    O. Miskovic, R. Troncoso and J. Zanelli, Phys. Lett. B 615, 277 (2005).ADSMathSciNetGoogle Scholar
  31. 31.
    A. H. Chamseddine, Nucl. Phys. B 346, 213 (1990).CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    R. Troncoso and J. Zanelli, Phys. Rev. D 58, 101703 (1998).ADSMathSciNetGoogle Scholar
  33. 33.
    R. Troncoso and J. Zanelli, Int. J. Theor. Phys. 38, 1181 (1999).MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    F. Canfora, A. Giacomini and R. Troncoso, Phys. Rev. D 77, 024002 (2008) [arXiv:0707.1056 [hep-th]].ADSMathSciNetGoogle Scholar
  35. 35.
    O. Miskovic, R. Troncoso and J. Zanelli, Phys. Lett. B 637, 317 (2006).ADSMathSciNetGoogle Scholar
  36. 36.
    F. Canfora, A. Giacomini, J. Oliva and R. Troncoso, work in progress.Google Scholar
  37. 37.
    E. Gravanis and S. Willison, Phys. Rev. D 75, 084025 (2007).ADSMathSciNetGoogle Scholar
  38. 38.
    C. Garraffo, G. Giribet, E. Gravanis and S. Willison, J. Math. Phys. 49, 042502 (2008).CrossRefADSMathSciNetGoogle Scholar
  39. 39.
    M. Thibeault, C. Simeone and E. F. Eiroa, Gen. Rel. Grav. 38, 1593 (2006).MATHCrossRefADSMathSciNetGoogle Scholar
  40. 40.
    M. G. Richarte and C. Simeone, Phys. Rev. D 76, 087502 (2007).ADSGoogle Scholar
  41. 41.
    B. Bhawal and S. Kar, Phys. Rev. D 46, 2464 (1992).ADSMathSciNetGoogle Scholar
  42. 42.
    H. Maeda and M. Nozawa, Phys. Rev. D 78, 024005 (2008).ADSMathSciNetGoogle Scholar
  43. 43.
    E. S. Fradkin and A. A. Tseytlin, Phys. Rept. 119, 233 (1985).CrossRefADSMathSciNetGoogle Scholar
  44. 44.
    N. Berkovits and E. Witten, JHEP 0408, 009 (2004) [arXiv:hep-th/0406051].CrossRefADSMathSciNetGoogle Scholar
  45. 45.
    K. S. Stelle, Phys. Rev. D16, 953 (1977).ADSMathSciNetGoogle Scholar
  46. 46.
    K. S. Stelle, Gen. Rel. Grav. 9, 353 (1978).CrossRefADSMathSciNetGoogle Scholar
  47. 47.
    F. S. N. Lobo, Class. Quant. Grav. 25, 175006 (2008).CrossRefADSMathSciNetGoogle Scholar
  48. 48.
    R. J. Riegert. Phys. Rev. Lett. 53, 315 (1984).CrossRefADSMathSciNetGoogle Scholar
  49. 49.
    J. D. Tempo, J. Oliva, and R. Troncoso, “Static wormholes in vacuum for conformal gravity,” Proceedings of “7th Alexander Friedmann International Seminar on Gravitation and Cosmology,” Joao Pessoa, Brazil, July 2008. To be published in Int. J. Mod. Phys. A.Google Scholar
  50. 50.
    D. G. Boulware, G. T. Horowitz, and A. Strominger, Phys. Rev. Lett. 50, 1726 (1983).CrossRefADSMathSciNetGoogle Scholar
  51. 51.
    S. Deser and B. Tekin, Phys. Rev. Lett. 89, 101101 (2002).CrossRefADSMathSciNetGoogle Scholar
  52. 52.
    S. Deser and B. Tekin Phys. Rev. D 67, 084009 (2003).ADSMathSciNetGoogle Scholar
  53. 53.
    S. Deser and B. Tekin, Phys. Rev. D 75, 084032 (2007) [arXiv:gr-qc/0701140].ADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  1. 1.Centro de Estudios Científicos (CECS)Centro de Ingeniería de la Innovación del CECS (CIN)Chile

Personalised recommendations