The Census Taker's Hat

Conference paper

If the observable universe really is a hologram, then of what sort? Is it rich enough to keep track of an eternally inflating multiverse? What physical and mathematical principles underlie it? Is the hologram a lower dimensional quantum field theory, and if so, how many dimensions are explicit, and how many “emerge?” Does the Holographic description provide clues for defining a probability measure on the Landscape?


Black Hole Central Charge Cosmological Constant Liouville Theory Bubble Nucleation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Maloney, S. Shenker, L. Susskind, unpublished.Google Scholar
  2. 2.
    N. Kaloper, M. Kleban, L. Sorbo, Observational implications of cosmological event horizons, Phys. Lett. B 600 (2004) 7, [arXiv:astro-ph/0406099].ADSGoogle Scholar
  3. 3.
    M. Kleban, Inflation unloaded, [arXiv:hep-th/0412055].Google Scholar
  4. 4.
    R. Bousso, J. Polchinski, Quantization of four-form fluxes and dynamical neutralization of the cosmological constant, JHEP 0006 (2000) 006, hep-th/0004134.CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    S. Kachru, R. Kallosh, A. Linde, S. P. Trivedi: De Sitter vacua in string theory. Phys. Rev. D 68 (2003) 046005, hep-th/0301240.ADSMathSciNetGoogle Scholar
  6. 6.
    L. Susskind, The anthropic landscape of string theory, [arXiv:hep-th/0302219].Google Scholar
  7. 7.
    M. R. Douglas, The statistics of string/M theory vacua, JHEP 0305 (2003) 046, hep-th/0303194.CrossRefADSGoogle Scholar
  8. 8.
    L. Susskind, L. Thorlacius, J. Uglum, The stretched horizon and black hole complementarity, Phys. Rev. D48 (1993) 3743–3761, arXiv:hep-th/9306069.ADSMathSciNetGoogle Scholar
  9. 9.
    Y. Kiem, H. L. Verlinde, E. P. Verlinde, Quantum horizons and complementarity, in High Energy Physics and Cosmology, ed. by E. Gava, A. Masiero, K. S. Narain, S. Randjbar-Daemi, Q. Shafi (ICTP Series in Theoretical Physics, ICTP, Trieste, Italy, June 13–July 29, 1994), Vol. 11, pp 586–606.Google Scholar
  10. 10.
    T. Banks, W. Fischler, M theory observables for cosmological space–times, hep-th/0102077.Google Scholar
  11. 11.
    G. 't Hooft, Dimensional reduction in quantum gravity, gr-qc/9310026.Google Scholar
  12. 12.
    L. Susskind, The world as a hologram, J. Math. Phys. 36 (1995) 6377–6396, hep-th/9409089MATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    J. M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113–1133, hep-th/9711200.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    E. Witten, Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2 (1998) 253–291, hep-th/9802150.MATHMathSciNetGoogle Scholar
  15. 15.
    L. Susskind, E. Witten, The holographic bound in Anti-de Sitter space, (1998), hep-th/9805114.Google Scholar
  16. 16.
    J. R. Gott, Nature 295 (1982) 304.CrossRefADSGoogle Scholar
  17. 17.
    A. H. Guth, E. Weinberg, Nucl. Phys. B 212 (1983) 321.CrossRefADSGoogle Scholar
  18. 18.
    P. J. Steinhardt, The very early universe, ed. by G. W. Gibbons, S. W. Hawking, S. T. C. Siklos (Cambridge University Press, Cambridge, 1983).Google Scholar
  19. 19.
    J. R. Gott, T. S. Statler, Phys. Lett. 136B (1984) 157.ADSGoogle Scholar
  20. 20.
    M. Bucher, A. S. Goldhaber, A. D. Linde, Eternal chaotic inflation, Mod. Phys. Lett. A 1 (1986) 81–85.Google Scholar
  21. 21.
    A. D. Linde, Eternally existing selfreproducing chaotic inflationary universe, Phys. Lett. B (1986).Google Scholar
  22. 22.
    S. R. Coleman, F. De Luccia, Gravitational effects on and of vacuum decay, Phys. Rev. D 21 (1980) 3305.ADSMathSciNetGoogle Scholar
  23. 23.
    B. Freivogel, M. Kleban, M. R. Martinez, L. Susskind, Observational consequences of a landscape, JHEP 0603 (2006) 039, arXiv:hep-th/0505232.CrossRefADSGoogle Scholar
  24. 24.
    S. W. Hawking, Comm. Math. Phys. 43 (1975) 199.CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    S. W. Hawking, Phys. Rev. D14 (1976) 2460.ADSMathSciNetGoogle Scholar
  26. 26.
    R. Bousso, B. Freivogel, I-S. Yang, Eternal inflation: the inside story, Phys. Rev. D 74 (2006) 103516, arXiv:hep-th/0606114.ADSMathSciNetGoogle Scholar
  27. 27.
    B. Freivogel, Y. Sekino, L. Susskind, C-P. Yeh, A holographic framework for eternal inflation, Phys. Rev. D 74 (2006) hep-th/0606204.Google Scholar
  28. 28.
    T. Banks, W. Fischler, L. Susskind, Quantum cosmology in (2+1)-dimensions and (3+1)-dimensions. Nucl. Phys. B 262 (1985) 159.CrossRefADSGoogle Scholar
  29. 29.
    R. Arnowitt, S. Deser, C. W. Misner, Gravitation: an introduction to current research, ed. by L. Witten (Wiley, New York, 1962), Chapter 7, pp 227–265, [arXiv:gr-qc/0405109].Google Scholar
  30. 30.
    T. Banks, TCP, quantum gravity, the cosmological constant and all that… Nucl. Phys. B 249 (1985) 332.CrossRefADSGoogle Scholar
  31. 31.
    J. Garriga, A. H. Guth, A. Vilenkin, Eternal inflation, bubble collisions, and the persistence of memory, arXiv:hep-th/0612242.Google Scholar
  32. 32.
    A. M. Polyakov, Quantum geometry of bosonic strings. Phys. Lett. B 103 (1981) 207–210.ADSMathSciNetGoogle Scholar
  33. 33.
    A. Kraemmer, H. B. Nielsen, L. Susskind, Nucl. Phys. B 28 (1971) 34.ADSGoogle Scholar
  34. 34.
    G. 't Hooft, Nucl. Phys. B 72 (1974) 461.CrossRefADSMathSciNetGoogle Scholar
  35. 35.
    M. R. Douglas, S. H. Shenker, Nucl. Phys. B 335 (1990) 635.CrossRefADSMathSciNetGoogle Scholar
  36. 36.
    D. J. Gross, A. A. Migdal, Phys. Rev. Lett. 64 (1990) 127.MATHCrossRefADSMathSciNetGoogle Scholar
  37. 37.
    J. Polchinski, Nucl. Phys. B 231 (1984) 269–295.CrossRefADSGoogle Scholar
  38. 38.
    W. Fischler, L. Susskind, Holography and cosmology, (1998), hep-th/9806039.Google Scholar
  39. 39.
    R. Bousso, The holographic principle, Rev. Mod. Phys. 74 (2002) 825, [arXiv:hep-th/0203101].CrossRefADSMathSciNetGoogle Scholar
  40. 40.
    A. Strominger, The dS/CFT correspondence, Journal-ref: JHEP 0110 (2001) 034, arXiv:hep-th/0106113.CrossRefMathSciNetGoogle Scholar
  41. 41.
    A. H. Guth, E. J. Weinberg, Could the universe have recovered from a slow first order phase transition? Nucl. Phys. B 212 (1983) 321.CrossRefADSGoogle Scholar
  42. 42.
    K. G. Wilson, Rev. Mod. Phys. 47 (1975) 773.CrossRefADSGoogle Scholar
  43. 43.
    B. Freivogel, G. T. Horowitz, S. Shenker, Colliding with a crunching bubble, arXiv:hep-th/0703146.Google Scholar
  44. 44.
    A. B. Zamolodchikov, Irreversibility' of the flux of the renormalization group in A 2-D field theory, JETP Lett. 43 (1986) 730–732.ADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  1. 1.Department of PhysicsStanford UniversityUSA

Personalised recommendations