Magnetic Monopoles in Electromagnetism and Gravity

  • Rubén Portugués
Conference paper

Magnetic monopoles have rivaled black holes as the most beautiful and elusive entities in the world of theoretical physics since they were first considered in the early twentieth century. They naturally arise in electromagnetism and have immediate implications on the underlying symmetries, both dynamical and internal, at both the classical and quantum level. In this article we will recap some facts about magnetic monopoles in electromagnetism, in particular notions regarding their contribution to the angular momentum of a system and how these concepts are related to the quantization condition for the product of the charges of a fundamental electric pole and magnetic pole. We then proceed to consider magnetic poles in general relativity and briefly address similar considerations in this theory.


Wave Function Angular Momentum Quantization Condition Gauge Transformation Magnetic Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. A. M. Dirac, “Quantised singularities in the electromagnetic field,” Proc. R. Soc. Lond. A 133 (1931) 60.ADSGoogle Scholar
  2. 2.
    M. Fierz, Helv. Phys. Acta. 17 (1944) 27.MATHMathSciNetGoogle Scholar
  3. 3.
    A. S. Goldhaber, “Spin and statistics connection for charge – monopole composites,” Phys. Rev. Lett. 36 (1976) 1122.CrossRefADSGoogle Scholar
  4. 4.
    J. S. Schwinger, “Sources and magnetic charge,” Phys. Rev. 173 (1968) 1536.CrossRefADSGoogle Scholar
  5. 5.
    J. S. Schwinger, “A magnetic model of matter,” Science 165 (1969) 757.CrossRefADSGoogle Scholar
  6. 6.
    S. R. Coleman, “The magnetic monopole fifty years later,” HUTP-82/A032 Lectures given at International School of Subnuclear Physics, Erice, Italy, Jul 31–Aug 11, 1981, at 6th Brazilian Symposium on Theoretical Physics, Jan 7–18, 1980, at Summer School in Theoretical Physics, Les Houches, France, and at Banff Summer Institute on Particle and Fields, Aug 16–28, 1981. Google Scholar
  7. 7.
    F. Wilczek, Phys. Rev. Lett. 48 (1982) 1144.CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    S. Deser, A. Gomberoff, M. Henneaux and C. Teitelboim, “Duality, self-duality, sources and charge quantization in abelian N-form theories,” Phys. Lett. B 400 (1997) 80 [arXiv:hep-th/9702184].CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    S. Deser, A. Gomberoff, M. Henneaux and C. Teitelboim, “p-Brane dyons and electric-magnetic duality,” Nucl. Phys. B 520 (1998) 179 [arXiv:hep-th/9712189].MATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    C. W. Bunster, S. Cnockaert, M. Henneaux and R. Portugues, Phys. Rev. D 73 (2006) 105014 [arXiv:hep-th/0601222].CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    E. Newman, L. Tamburino and T. Unti, “Empty space generalization of the Schwarzschild metric,” J. Math. Phys. 4 (1963) 915.MATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    A. Zee, “Gravitomagnetic pole and mass quantization,” Phys. Rev. Lett. 55 (1985) 2379 [Erratum-ibid. 56 (1986) 1101].CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    S. Ramaswamy and A. Sen, “Comment on ‘Gravitomagnetic pole and mass quantization.’,” Phys. Rev. Lett. 57 (1986) 1088.CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    J. Samuel and B. R. Iyer, “Comment on ‘Gravitomagnetic pole and mass quantization.’,” Phys. Rev. Lett. 57 (1986) 1089.CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    M. T. Mueller and M. J. Perry, “Constraints on magnetic mass,” Class. Quant. Grav. 3 (1986) 65.CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    A. Magnon, “Global techniques, dual mass, and causality violation,” J. Math. Phys. 27 (1986) 1066.MATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    C. W. Misner, “The flatter regions of Newman, Unti, and Tamburino's generalized Schwarzschild space,” J. Math. Phys. 4(7) (1963) 924.CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    P. A. M. Dirac, “The theory of magnetic poles,” Phys. Rev. 74 (1948) 817.MATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  1. 1.Department of Molecular and Cellular BiologyHarvard UniversityUSA

Personalised recommendations