Advertisement

Quantum Mechanics on some Supermanifolds

  • Luca Mezincescu
Conference paper

Results of recent investigations on super Landau Models, are presented in a way streamlined as to outline the difficulties connected to the formulation of non relativistic motion on some supermanifolds and the subsequent solution of these difficulties.

Keywords

Hermitian Conjugate Supersymmetry Algebra Negative Norm Cartan Form Landau Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Ivanov, L. Mezincescu, A. Pashnev and P. K. Townsend, Odd coset quantum mechanics, Phys. Lett. B 566 (2003) 175 [arXiv:hep-th/0301241].ADSMathSciNetGoogle Scholar
  2. 2.
    E. Ivanov, L. Mezincescu and P. K. Townsend, Fuzzy CP(nǀm) as a quantum superspace, in Symmetries in Gravity and Field Theory, eds. V. Aldaya, J.M. Cerveró and P. García, Ediciones Universidad de Salamanca, Salamanca, Spain, 2004, pp. 385–408; arXiv:hep-th/0311159.Google Scholar
  3. 3.
    E. Ivanov, L. Mezincescu and P. K. Townsend, A super-flag Landau model, in From Fields to Strings: Circumnavigating Theoretical Physics, eds. M. Shifman, A. Vainshtein and J. Wheater, World Scientific, Singapore, 2004; arXiv:hep-th/0404108.Google Scholar
  4. 4.
    E. Ivanov, L. Mezincescu and P. K. Townsend, Planar super-Landau models, JHEP 0601 (2006) 143 [arXiv:hep-th/0510019].CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    T. Curtright, E. Ivanov, L. Mezincescu and P. K. Townsend, Planar super-Landau models revisited, JHEP 0704 (2007) 020 [arXiv:hep-th/0612300].CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    A. Beylin, T. L. Curtright, E. Ivanov, L. Mezincescu and P. K. Townsend, Unitary spherical super-Landau models, arXiv:0806.4716 [hep-th].Google Scholar
  7. 7.
    C. M. Bender, Introduction to PT-symmetric quantum theory, Contemp. Phys. 46 (2005) 277 [arXiv:quant-ph/0501052].CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    T. Curtright and L. Mezincescu, Biorthogonal quantum systems, J. Math. Phys. 48 (2007) 092106 [arXiv:quant-ph/0507015].CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    K. Hasebe, Quantum Hall liquid on a noncommutative superplane, Phys. Rev. D 72 (2005) 105017 [arXiv:hep-th/0503162].ADSGoogle Scholar
  10. 10.
    D. V. Volkov and A. I. Pashnev, Supersymmetric Lagrangian for particles in proper time, Theor. Math. Phys. 44 (1980) 770 [Teor. Mat. Fiz. 44 (1980) 321].CrossRefMathSciNetGoogle Scholar
  11. 11.
    K. Hasebe and Y. Kimura, Fuzzy supersphere and supermonopole, Nucl. Phys. B 709 (2005) 94 [arXiv:hep-th/0409230].CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    M. Banados, L. J. Garay and M. Henneaux, The dynamical structure of higher dimensional Chern-Simons theory, Nucl. Phys. B 476 (1996) 611 [arXiv:hep-th/9605159].CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  1. 1.University of MiamiUSA

Personalised recommendations