Skip to main content

Black holes with a conformally coupled scalar field

  • Conference paper
  • First Online:

We consider gravity in presence of a cosmological constant in arbitrary spacetime dimensions with a conformally coupled scalar field and a self-interacting potential. The energy-momentum tensor is traceless when the constant appearing in front of the non-minimal coupling term and the power of the self-interacting potential are properly chosen. First, configurations with a constant scalar field are studied. In the general case, the spacetime is required to be an Einstein space. However, for a special value of the scalar field this condition can be relaxed and it is enough that the spacetime has a constant scalar curvature fixed by the cosmological constant. In this case the cosmological constant and the self-interacting coupling constant are related. The second part is devoted to searching black holes dressed with a conformally coupled scalar field in dimensions greater than four. Since the existence of a no-go theorem discarding static and asymptotically flat black holes in higher dimensions, we introduce a cosmological constant and a self-interacting potential in the action. Using a standard static ansatz for the metric, which includes both spherically symmetric as topological black holes, and a scalar field depending only on the radial coordinate, it is shown that there are no higher-dimensional counterparts of the known black holes in three and four dimensions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Ruffini and J. Wheeler, Phys. Today 24(1), 30 (1971).

    Article  ADS  Google Scholar 

  2. J. D. Bekenstein, Phys. Rev. D 5, 1239 (1972).

    ADS  MathSciNet  Google Scholar 

  3. C. Teitelboim, Phys. Rev. D 5, 2941 (1972).

    ADS  MathSciNet  Google Scholar 

  4. D. Sudarsky, Class. Quant. Grav. 12, 579. (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. A. Saa, J. Math. Phys. 37, 2346 (1996).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. A. E. Mayo and J. D. Bekenstein, Phys. Rev. D 54, 5059 (1996).

    ADS  MathSciNet  Google Scholar 

  7. A. Saa, Phys. Rev. D 53, 7377 (1996).

    ADS  MathSciNet  Google Scholar 

  8. J. D. Bekenstein, “Black hole hair: Twenty-five years after”. 2nd International Sakharov Conference on Physics, Moscow, Russia, 20–23 May, 1996, arXiv:gr-qc/9605059.

    Google Scholar 

  9. D. Sudarsky and T. Zannias, Phys. Rev. D 58, 087502 (1998).

    ADS  MathSciNet  Google Scholar 

  10. K. A. Bronnikov and G. N. Shikin, Grav. Cosmol. 8, 107 (2002).

    MATH  ADS  MathSciNet  Google Scholar 

  11. D. Sudarsky and J. A. González, Phys. Rev. D 67, 024038 (2003).

    ADS  Google Scholar 

  12. E. Ayón-Beato, Class. Quant. Grav. 19, 5465 (2002).

    Article  MATH  ADS  Google Scholar 

  13. U. Nucamendi and M. Salgado, Phys. Rev. D 68, 044026 (2003).

    ADS  Google Scholar 

  14. T. Hertog, Phys. Rev. D 74, 084008 (2006).

    ADS  MathSciNet  Google Scholar 

  15. N. Bocharova, K. Bronnikov and V. Melnikov, Vestn. Mosk. Univ. Fiz. Astron. 6, 706 (1970).

    Google Scholar 

  16. J. D. Bekenstein, Ann. Phys. 82, 535 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  17. B. L. Hu and L. Parker, Phys. Rev. D 17, 933 (1978) [Erratum-ibid. D 17, 3292 (1978)].

    ADS  Google Scholar 

  18. P. R. Anderson, Phys. Rev. D 32, 1302 (1985).

    ADS  Google Scholar 

  19. N. G. Phillips and B. L. Hu, Phys. Rev. D 55, 6123 (1997) [arXiv:gr-qc/9611012].

    ADS  MathSciNet  Google Scholar 

  20. B. L. Hu and Y. h. Zhang, Phys. Rev. D 37, 2151 (1988).

    ADS  Google Scholar 

  21. M. V. Fischetti, J. B. Hartle and B. L. Hu, Phys. Rev. D 20, 1757 (1979).

    ADS  MathSciNet  Google Scholar 

  22. J. B. Hartle and B. L. Hu, Phys. Rev. D 20, 1772 (1979).

    ADS  MathSciNet  Google Scholar 

  23. J. B. Hartle and B. L. Hu, Phys. Rev. D 21, 2756 (1980).

    ADS  MathSciNet  Google Scholar 

  24. D. Noakes, J. Math. Phys. 24, 1846 (1983).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. S. Sonego and V. Faraoni, Class. Quant. Grav. 10, 1185 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  26. C. Martínez and J. Zanelli, Phys. Rev. D 54, 3830 (1996).

    ADS  Google Scholar 

  27. M. Henneaux, C. Martínez, R. Troncoso and J. Zanelli, Phys. Rev. D 65, 104007 (2002).

    ADS  Google Scholar 

  28. C. Martínez, R. Troncoso and J. Zanelli, Phys. Rev. D 67, 024008 (2003).

    ADS  Google Scholar 

  29. C. Martínez, R. Troncoso and J. Zanelli, Phys. Rev. D 70, 084035 (2004).

    ADS  Google Scholar 

  30. C. Martínez, J. P. Staforelli and R. Troncoso, Phys. Rev. D 74, 044028 (2006).

    ADS  Google Scholar 

  31. C. Martínez and R. Troncoso, Phys. Rev. D 74, 064007 (2006).

    ADS  Google Scholar 

  32. T. Torii, K. Maeda and M. Narita, Phys. Rev. D64, 044007 (2001).

    ADS  MathSciNet  Google Scholar 

  33. E. Winstanley, Found. Phys. 33, 111 (2003).

    Article  MathSciNet  Google Scholar 

  34. T. Hertog and K. Maeda, Phys. Rev. D 71, 024001 (2005).

    ADS  MathSciNet  Google Scholar 

  35. E. Winstanley, Class. Quant. Grav. 22, 2233 (2005).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. E. Radu and E. Winstanley, Phys. Rev. D 72, 024017 (2005).

    ADS  Google Scholar 

  37. T. Hertog and K. Maeda, JHEP 0407, 051 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  38. K. G. Zloshchastiev, Phys. Rev. Lett. 94, 121101 (2005).

    Article  ADS  Google Scholar 

  39. M. Henneaux, C. Martínez, R. Troncoso and J. Zanelli, Phys. Rev. D 70, 044034 (2004).

    ADS  Google Scholar 

  40. M. Henneaux, C. Martínez, R. Troncoso and J. Zanelli, Ann. Phys. 322, 824 (2007).

    Article  MATH  ADS  Google Scholar 

  41. A. J. Amsel and D. Marolf, Phys. Rev. D 74, 064006 (2006) [Erratum-ibid. D 75, 029901 (2007)].

    ADS  MathSciNet  Google Scholar 

  42. M. Natsuume, T. Okamura and M. Sato, Phys. Rev. D 61, 104005 (2000).

    ADS  MathSciNet  Google Scholar 

  43. E. Ayón-Beato, A. García, A. Macías and J. M. Pérez-Sánchez, Phys. Lett. B 495, 164 (2000).

    ADS  Google Scholar 

  44. G. Barnich, “Conserved charges in gravitational theories: contribution from scalar fields”. 3rd International Sakharov Conference on Physics, Moscow, Russia, 24–29 June 2002. arXiv:gr-qc/0211031.

    Google Scholar 

  45. J. Gegenberg, C. Martínez and R. Troncoso, Phys. Rev. D 67, 084007 (2003).

    ADS  Google Scholar 

  46. E. Ayón-Beato, C. Martínez and J. Zanelli, Gen. Rel. Grav. 38, 145 (2006).

    Article  MATH  ADS  Google Scholar 

  47. M. Hortacsu, H. T. Ozcelik and B. Yapiskan, Gen. Rel. Grav. 35, 1209 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  48. M. I. Park, Phys. Lett. B 597, 237 (2004).

    ADS  Google Scholar 

  49. M. Bañados and S. Theisen, Phys. Rev. D 72, 064019 (2005).

    ADS  Google Scholar 

  50. M. Salgado, Class. Quant. Grav. 20, 4551 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. A. Ashtekar, A. Corichi and D. Sudarsky, Class. Quant. Grav. 20, 3413 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  52. A. Ashtekar and A. Corichi, Class. Quant. Grav. 20, 4473 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  53. T. Hertog and S. Hollands, Class. Quant. Grav. 22, 5323 (2005).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  54. P. L. McFadden and N. G. Turok, Phys. Rev. D 71, 086004 (2005).

    ADS  MathSciNet  Google Scholar 

  55. A. Biswas and S. Mukherji, JCAP 0602, 002 (2006).

    ADS  Google Scholar 

  56. I. Papadimitriou, JHEP 0702, 008 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  57. G. Koutsoumbas, S. Musiri, E. Papantonopoulos and G. Siopsis, JHEP 0610, 006 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  58. S. de Haro, I. Papadimitriou and A. C. Petkou, Phys. Rev. Lett. 98, 231601 (2007).

    Article  ADS  Google Scholar 

  59. A. M. Barlow, D. Doherty and E. Winstanley, Phys. Rev. D 72, 024008 (2005).

    ADS  MathSciNet  Google Scholar 

  60. T. J. T. Harper, P. A. Thomas, E. Winstanley and P. M. Young, Phys. Rev. D 70, 064023 (2004).

    ADS  MathSciNet  Google Scholar 

  61. G. Koutsoumbas, E. Papantonopoulos and G. Siopsis, JHEP 0805, 107 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  62. G. Dotti, R. J. Gleiser and C. Martínez, Phys. Rev. D 77, 104035 (2008).

    ADS  Google Scholar 

  63. M. Hassaine and C. Martínez, Phys. Rev. D 75, 027502 (2007).

    ADS  Google Scholar 

  64. J. D. Bekenstein, Ann. Phys. 91, 75 (1975).

    Article  ADS  Google Scholar 

  65. E. Ayón-Beato, C. Martínez, R. Troncoso and J. Zanelli, Phys. Rev. D 71, 104037 (2005).

    ADS  Google Scholar 

  66. C. Martínez and J. Zanelli, Phys. Rev. D 55, 3642 (1997).

    ADS  Google Scholar 

  67. C. Martínez, Phys. Rev. D 58, 027501 (1998).

    ADS  Google Scholar 

  68. K. A. Bronnikov and Yu. N. Kireyev, Phys. Lett. A 67, 95 (1978).

    ADS  MathSciNet  Google Scholar 

  69. M. Nadalini, L. Vanzo and S. Zerbini, Phys. Rev. D 77, 024047 (2008).

    ADS  MathSciNet  Google Scholar 

  70. B. C. Xanthopoulos and T. Zannias, J. Math. Phys. 32, 1875 (1991).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  71. B. C. Xanthopoulos and T. E. Dialynas, J. Math. Phys. 33, 1463 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  72. C. Klimčík, J. Math. Phys. 34, 1914 (1993).

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristián Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag New York

About this paper

Cite this paper

Martínez, C. (2009). Black holes with a conformally coupled scalar field. In: Zanelli , J., Henneaux, M. (eds) Quantum Mechanics of Fundamental Systems: The Quest for Beauty and Simplicity. Springer, New York, NY. https://doi.org/10.1007/978-0-387-87499-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-87499-9_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-87498-2

  • Online ISBN: 978-0-387-87499-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics