Skip to main content

Monitoring of Upper Limb Prosthesis Activity in Trans-Radial Amputees

  • Chapter
  • First Online:
Amputation, Prosthesis Use, and Phantom Limb Pain

Abstract

There has been a shift in rehabilitation medicine from conventional evaluation procedures towards more quantitative approaches. However, up to now, a quantitative evaluation procedure for upper limb prostheses that is applicable outside of the laboratory or clinical environment has not been established. The requirement for such a procedure arises from the findings of a number of recent studies suggesting that unilateral trans-radial amputees do not involve their prosthesis in task performance in real life situations, even if they are able to demonstrate the use of the prosthesis in the clinical environment. This suggests that laboratory, or clinic-based assessments are limited in the information they provide to clinicians or designers of new prostheses. Further, self-report approaches, such as questionnaires or interviews rely on accurate recall and reporting by subjects, an approach that has been shown to be flawed in other rehabilitation and public health domains.

Therefore, this chapter reports a study investigating the feasibility of quantifying the nature and duration of tasks performed with a myoelectric prosthesis by means of an activity monitor. It was hypothesised that by monitoring the prosthesis hand opening and closing it may be possible to identify the manipulation phase. Such information could be used to segment acceleration signals, measured from arm-located accelerometers, which may contain information characterising the task(s) being performed and differentiate it/them from other tasks. The results of this study indicate that, by using a neural network classifier, customised for each user, acceleration signals measured during the manipulation phase of task performance could accurately characterise the task being performed. The implications of these findings and future work are discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnew PJ (1981) Functional effectiveness of a myo-electric prosthesis compared with a functional split-hook prosthesis: a single subject experiment. Prosthet Orthot Int 5:2–96

    Google Scholar 

  • Bagley AM, Molitor F, Wagner LV et al (2006) The unilateral below elbow test: a function test for children with unilateral congenital below elbow deficiency. Dev Med Child Neurol 48:569–575

    Article  PubMed  Google Scholar 

  • Bergman K, Ornholmer L, Zackrisson K et al (1992) Functional benefit of an adaptive myoelectric prosthetic hand compared to a conventional myoelectric hand. Prosthet Orthot Int 16:32–37

    PubMed  CAS  Google Scholar 

  • Bernmark E, Wiktorin C (2002) A triaxial accelerometer for measuring arm movements. Appl Ergon 33:541–547

    Article  PubMed  Google Scholar 

  • Bishop CM (2005) Neural networks for pattern recognition. Oxford university press, Oxford, UK

    Google Scholar 

  • Black N, Biden EN, Rickards J (2005) Using potential energy to measure work related activities for persons wearing upper limb prostheses. Robotica 23:319–327

    Article  Google Scholar 

  • Buffart LM, Roebroeck ME, Pesch-Batenburg JM et al (2006) Assessment of arm/hand functioning in children with a congenital transverse or longitudinal reduction deficiency of the upper limb. Disabil Rehabil 28:85–95

    Article  PubMed  Google Scholar 

  • Burger H, Marincek C (1994) Upper limb prosthetic use in Slovenia. Prosthet Orthot Int 18:25–33

    PubMed  CAS  Google Scholar 

  • Burger H, Brezovar D, Marincek C (2004) Comparison of clinical test and questionnaires for the evaluation of upper limb prosthetic use in children. Disabil Rehabil 26:911–916

    Article  PubMed  Google Scholar 

  • Busse ME, Pearson OR, Van Deursen R et al (2004) Quantified measurement of activity provides insight into motor function and recovery in neurological disease. J Neurol Neurosurg Psychiatry 75:884–888

    Article  PubMed  CAS  Google Scholar 

  • Bussmann HB, Reuvekamp PJ, Veltink PH et al (1998) Validity and reliability of measurements obtained with an “activity monitor” in people with and without a transtibial amputation. Phys Ther 78:989–998

    PubMed  CAS  Google Scholar 

  • Cappozzo A, Catani F, Croce UD, et al (1995) Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin Biomech (Bristol, Avon) 10:171–178

    Google Scholar 

  • Cappozzo A, Catani F, Leardini A et al (1996) Position and orientation in space of bones during movement: experimental artefacts. Clin Biomech (Bristol, Avon) 11:90–100

    Google Scholar 

  • Chau T (2001a) A review of analytical techniques for gait data. Part 2: neural network and wavelet methods. Gait Posture 13:102–120

    Article  PubMed  CAS  Google Scholar 

  • Chau T (2001b) A review of analytical techniques for gait data. Part 1: fuzzy, statistical and fractal methods. Gait Posture 13:49–66

    Article  PubMed  CAS  Google Scholar 

  • Coleman KL, Smith DG, Boone DA et al (1999) Step activity monitor: long-term, continuous recording of ambulatory function. J Rehabil Res Dev 36:8–18

    PubMed  CAS  Google Scholar 

  • Culhane KM, O’Connor M, Lyons D et al (2005) Accelerometers in rehabilitation medicine for older adults. Age Ageing 34:556–560

    Article  PubMed  CAS  Google Scholar 

  • Edelstein JE, Berger N (1993) Performance comparison among children fitted with myoelectric and body-powered hands. Arch Phys Med Rehabil 74:376–380

    PubMed  CAS  Google Scholar 

  • Fordyce W (1976) Behavioral methods for chronic pain and illness. Mosby, St. Louis, MO

    Google Scholar 

  • Fraser CM (1998) An evaluation of the use made of cosmetic and functional prostheses by unilateral upper limb amputees. Prosthet Orthot Int 22:216–223

    PubMed  CAS  Google Scholar 

  • Gaine WJ, Smart C, Bransby-Zachary M (1997) Upper limb traumatic amputees. Review of prosthetic use. J Hand Surg [Br] 22:73–76

    Google Scholar 

  • Gambrell CR (2008) Overuse syndrome and the unilateral upper limb amputee: consequences and prevention. J Prosthet Orthot 20:126

    Article  Google Scholar 

  • Godfrey A, Conway R, Meagher D et al (2008) Direct measurement of human movement by accelerometry. Med Eng Phys 30:1364–1386

    Article  PubMed  CAS  Google Scholar 

  • Grant PM, Ryan CG, Tigbe WW et al (2006) The validation of a novel activity monitor in the measurement of posture and motion during everyday activities. Br J Sports Med 40:992–997

    Article  PubMed  CAS  Google Scholar 

  • Haeuber E, Shaughnessy M, Forrester LW et al (2004) Accelerometer monitoring of home- and community-based ambulatory activity after stroke. Arch Phys Med Rehabil 85:1997–2001

    Article  PubMed  Google Scholar 

  • Hansson G, Asterland P, Holmer N et al (2001) Validity and reliability of triaxial accelerometers for inclinometry in posture analysis. Med Biol Eng Comput 39:405–413

    Article  PubMed  CAS  Google Scholar 

  • Hansson GA, Arvidsson I, Ohlsson K et al (2006) Precision of measurements of physical workload during standardised manual handling. Part II: Inclinometry of head, upper back, neck and upper arms. J Electromyogr Kinesiol 16:125–136

    Google Scholar 

  • Hermansson LM, Fisher AG, Bernspang B et al (2005) Assessment of capacity for myoelectric control: a new Rasch-built measure of prosthetic hand control. J Rehabil Med 37:166–171

    PubMed  Google Scholar 

  • Hermansson LM, Bodin L, Eliasson AC (2006) Intra- and inter-rater reliability of the assessment of capacity for myoelectric control. J Rehabil Med 38:118–123

    Article  PubMed  Google Scholar 

  • Jahanshahi M, Philips C (1986) Validating a new technique for the assessment of pain behaviour. Behav Res Ther 24:35–42

    Article  PubMed  CAS  Google Scholar 

  • Jones LE, Davidson JH (1999) Save that arm: a study of problems in the remaining arm of unilateral upper limb amputees. Prosthet Orthot Int 23:55–58

    PubMed  CAS  Google Scholar 

  • Kejlaa GH (1993) Consumer concerns and the functional value of prostheses to upper limb amputees. Prosthet Orthot Int 17:157–163

    PubMed  CAS  Google Scholar 

  • Light CM, Chappell PH, Kyberd PJ et al (1999) A critical review of functionality assessment of natural and prosthetic hands. Br J Occup Ther 62:7–12

    Google Scholar 

  • Light CM, Chappell PH, Kyberd PJ (2002) Establishing a standardized clinical assessment tool of pathologic and prosthetic hand function: Normative data, reliability, and validity. Arch Phys Med Rehabil 83:776–783

    Article  PubMed  Google Scholar 

  • Malone JM, Fleming LL, Roberson J et al (1984) Immediate, early, and late postsurgical management of upper-limb amputation. J Rehabil Res Dev 21:33–41

    PubMed  CAS  Google Scholar 

  • Mathie MJ, Coster ACF, Lovell NH et al (2004) Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Physiol Meas 25:R1–R20

    Article  PubMed  Google Scholar 

  • Meier RH, Atkins DJ (2004) Functional restoration of adults and children with upper extremity amputation. Demos, New York

    Google Scholar 

  • Millstein SG, Heger H, Hunter GA (1986) Prosthetic use in adult upper limb amputees: a comparison of the body powered and electrically powered prostheses. Prosthet Orthot Int 10:27–34

    PubMed  CAS  Google Scholar 

  • Muzumdar A (2004) Powered upper limb prostheses: control, implementation and clinical application. Springer, Berlin

    Google Scholar 

  • NASDAB (2005) The amputee statistical database for the United Kingdom [annual report] (2005/06) Information Services Division, NHS Scotland. Edinburgh. http://www.nasdab.co.uk/pdf.pl?file=nasdab/news/080117_(web)_CompleteReport.pdf. Accessed 28 Dec 2008

  • Northmore-Ball MD, Heger H, Hunter GA (1980) The below-elbow myo-electric prosthesis. A comparison of the Otto Bock myo-electric prosthesis with the hook and functional hand. J Bone Joint Surg Br 62:363–367

    PubMed  CAS  Google Scholar 

  • Pezzin LE, Dillingham TR, Mackenzie EJ et al (2004) Use and satisfaction with prosthetic limb devices and related services. Arch Phys Med Rehabil 85:723–729

    Article  PubMed  Google Scholar 

  • Preece SJ, Goulermas JY, Kenney LP, Howard D, Meijer K, Crompton R. (2009) Activity identification using body-mounted sensors – A review of classification techniques. Physiol Meas. 30(4):R1–33

    Google Scholar 

  • Pruitt SD, Varni JW, Setoguchi Y (1996) Functional status in children with limb deficiency: development and initial validation of an outcome measure. Arch Phys Med Rehabil 77:1233–1238

    Article  PubMed  CAS  Google Scholar 

  • Pruitt SD, Varni JW, Seid M et al (1998) Functional status in limb deficiency: development of an outcome measure for preschool children. Arch Phys Med Rehabil 79:405–411

    Article  PubMed  CAS  Google Scholar 

  • Pruitt SD, Seid M, Varni JW et al (1999) Toddlers with limb deficiency: conceptual basis and initial application of a functional status outcome measure. Arch Phys Med Rehabil 80:819–824

    Article  PubMed  CAS  Google Scholar 

  • Ren L, Jones R, Howard D (2005) A software package for three-dimensional motion analysis of general biomechanical multi-body systems. In: Proceedings of biomechanics of the lower limb in health, disease and rehabilitation, University of Salford, UK, 122–123

    Google Scholar 

  • Resnick B, Nahm ES, Orwig D et al (2001) Measurement of activity in older adults: reliability and validity of the step activity monitor. J Nurs Meas 9:275–290

    PubMed  CAS  Google Scholar 

  • Roeschlein RA, Domholdt E (1989) Factors related to successful upper extremity prosthetic use. Prosthet Orthot Int 13:14–18

    PubMed  CAS  Google Scholar 

  • Schasfoort FC, Bussmann JB, Zandbergen AM et al (2003) Impact of upper limb complex regional pain syndrome type 1 on everyday life measured with a novel upper limb-activity monitor. Pain 101:79–88

    Article  PubMed  Google Scholar 

  • Schasfoort FC, Bussmann JB, Krijnen HJ et al (2006) Upper limb activity over time in complex regional pain syndrome type 1 as objectively measured with an upper limb-activity monitor: an explorative multiple case study. Eur J Pain 10:31–39

    Article  PubMed  Google Scholar 

  • Silcox DH, Rooks MD, Vogel RR et al (1993) Myoelectric prostheses. A long-term follow-up and a study of the use of alternate prostheses. J Bone Joint Surg Am 75:1781–1789

    PubMed  Google Scholar 

  • Smith DG, Michael JW, Bowker JH (2004) Atlas of amputations and limb deficiencies: Surgical, prosthetic, and rehabilitation principles. American Academy of Orthopaedic Surgeons, Rosemont, IL

    Google Scholar 

  • Sobuh M (2008) Monitoring of upper limb prosthesis activity in trans-radial amputees – A feasibility study. MSc thesis Institute for Health & Social Care Research (IHSCR), School of Health Care Professions. University of Salford, Salford, UK

    Google Scholar 

  • Tresadern PA, Thies SB, Kenney LP, Howard D, Smith C, Rigby J, Goulermas JY (2009) Simulating acceleration from stereophotogrammetry for medical device design. J Biomech Eng 131(6):061002

    Google Scholar 

  • Thies SB, Tresadern P, Kenney L et al (2007) Comparison of linear accelerations from three measurement systems during “reach & grasp”. Med Eng Phys 29:967–972

    Article  PubMed  CAS  Google Scholar 

  • Thornby MA, Krebs DE (1992) Bimanual skill development in pediatric below-elbow amputation: a multicenter, cross-sectional study. Arch Phys Med Rehabil 73:697–702

    PubMed  CAS  Google Scholar 

  • Tulen JH, Bussmann HB, van Steenis HG et al (1997) A novel tool to quantify physical activities: ambulatory accelerometry in psychopharmacology. J Clin Psychopharmacol 17:202–207

    Article  PubMed  CAS  Google Scholar 

  • Turk DC, Wack JT, Kerns RD (1985) An empirical examination of the “pain-behavior” construct. J Behav Med 8:119–130

    Article  PubMed  CAS  Google Scholar 

  • UNB test of prosthetics function: A test for unilateral upper extremity amputees, ages 2-13 [test manual] (1985) Bio-Engineering Institute, University of Brunswick. Fredericton, New Brunswick. http://www.unb.ca/biomed/unb_test_of_prosthetics_function.pdf Accessed 14 May 2008

  • Uswatte G, Miltner WH, Foo B et al (2000) Objective measurement of functional upper-extremity movement using accelerometer recordings transformed with a threshold filter. Stroke 31:662–667

    PubMed  CAS  Google Scholar 

  • Uswatte G, Foo WL, Olmstead H et al (2005) Ambulatory monitoring of arm movement using accelerometry: an objective measure of upper-extremity rehabilitation in persons with chronic stroke. Arch Phys Med Rehabil 86:1498–1501

    Article  PubMed  Google Scholar 

  • van Lunteren A, van Lunteren-Gerritsen GH, Stassen HG, et al (1983) A field evaluation of arm prostheses for unilateral amputees. Prosthet Orthot Int 7:141–151

    Google Scholar 

  • Vega-Gonzalez A, Granat MH (2005) Continuous monitoring of upper-limb activity in a free-living environment. Arch Phys Med Rehabil 86:541–548

    Article  PubMed  Google Scholar 

  • Vlaeyen JW, Van Eek H, Groenman NH et al (1987) Dimensions and components of observed chronic pain behavior. Pain 31:65–75

    Article  PubMed  CAS  Google Scholar 

  • Weaver SA, Lange LR, Vogts VM (1988) Comparison of myoelectric and conventional prostheses for adolescent amputees. Am J Occup Ther 42:87–91

    PubMed  CAS  Google Scholar 

  • Welk GJ, Blair SN, Wood K et al (2000) A comparative evaluation of three accelerometry-based physical activity monitors. Med Sci Sports Exerc 32:S489–S497

    Article  PubMed  CAS  Google Scholar 

  • Wright VF (2006) Measurement of functional outcome with individuals who use upper extremity prosthetic devices: Current and future directions. J Prosth Orthot 18:46–56

    Google Scholar 

  • Wright TW, Hagen AD, Wood MB (1995) Prosthetic usage in major upper extremity amputations. J Hand Surg [Am] 20:619–622

    Google Scholar 

  • Wright FV, Hubbard S, Naumann S et al (2003) Evaluation of the validity of the prosthetic upper extremity functional index for children. Arch Phys Med Rehabil 84:518–527

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the University of Jordan and thank the participants in the study. The authors also acknowledge colleagues at the University of Strathclyde for their assistance with figures 4.2– 4.4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Kenney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sobuh, M., Kenney, L., Tresadern, P., Twiste, M., Thies, S. (2009). Monitoring of Upper Limb Prosthesis Activity in Trans-Radial Amputees. In: Murray, C. (eds) Amputation, Prosthesis Use, and Phantom Limb Pain. Springer, New York, NY. https://doi.org/10.1007/978-0-387-87462-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-87462-3_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-87461-6

  • Online ISBN: 978-0-387-87462-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics