Skip to main content

Pulmonary Vascular Mechanics

  • Chapter
  • First Online:
Textbook of Pulmonary Vascular Disease

Abstract

Biomechanics is concerned with the behavior of living tissues when subjected to the action of forces, and the subsequent effects of these living tissues on their environment. In terms of the pulmonary vasculature, we can consider the vascular tissue and the blood as “physical bodies,” and concern ourselves with the biosolid and biofluid ­mechanics principles, respectively, that govern their behavior. In the cardiovascular system, it is generally the blood flowing through the vasculature that exerts forces (e.g., pressure and shear) on the vascular tissue. When the arterial tissue responds to these forces, it subsequently affects the rate and pattern of blood flowing through it, which is its “environment.” Indeed, the interactions between blood flow and the vascular walls are so interrelated that an entire branch of biomechanics is devoted to them – the area of biofluid–biosolid interactions. The mechanics of the pulmonary vasculature are particularly complex because blood flow can be affected not only by the vascular tissue (and vice versa) but also by the state of the airways, especially in the lung capillaries. We begin this chapter by considering the mechanical behavior of blood vessels independent of airways and introduce some basic concepts important to biomechanics, such as stress and strain. We also briefly review some key concepts in biofluid mechanics (e.g., resistance, Reynolds number, and Womersely number) and the mechanical behavior of blood vessel constituents. The subsequent sections are focused on the mechanics of the pulmonary vasculature specifically. First, a review of the mechanics of large pulmonary arteries is presented followed by comments on the intermediate and small vessels in the intra-alveolar region. Next, the effects of breathing on pulmonary vascular mechanics are addressed and the effects of pulmonary vascular tissue mechanics on pulmonary vascular blood flow dynamics are discussed. Finally, we consider the impact of some disease states on these aspects of pulmonary vascular mechanics and conclude with a summary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hibbeler RC (1998) Engineering mechanics. Statics. 8th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  2. McLoughlin P, McMurtry I (2007) Counterpoint: chronic hypoxia-induced pulmonary hypertension does not lead to loss of pulmonary vasculature. J Appl Physiol 103:1451–1453, discussion 3–4

    Article  PubMed  CAS  Google Scholar 

  3. Bergel DH (1961) The dynamic elastic properties of the arterial wall. J Physiol 156:458–469

    PubMed  CAS  Google Scholar 

  4. Hudetz AG (1979) Incremental elastic modulus for orthotropic incompressible arteries. J Biomech 12:651–655

    Article  PubMed  CAS  Google Scholar 

  5. Weibel ER (1963) Morphometry of the human lung. Springer, Berlin

    Google Scholar 

  6. Singhal SS, Cumming G, Horsfield K, Harking LK (1973) Morphometric study of pulmonary arterial tree and its haemodynamics. J Assoc Physicians India 21:719–722

    PubMed  CAS  Google Scholar 

  7. Yen RT, Zhuang FY, Fung YC, Ho HH, Tremer H, Sobin SS (1983) Morphometry of cat pulmonary venous tree. J Appl Physiol 55:236–242

    PubMed  CAS  Google Scholar 

  8. Yen RT, Zhuang FY, Fung YC, Ho HH, Tremer H, Sobin SS (1984) Morphometry of cat’s pulmonary arterial tree. J Biomech Eng 106:131–136

    Article  PubMed  CAS  Google Scholar 

  9. Jiang ZL, Kassab GS, Fung YC (1994) Diameter-defined Strahler system and connectivity matrix of the pulmonary arterial tree. J Appl Physiol 76:882–892

    PubMed  CAS  Google Scholar 

  10. Huang W, Yen RT, McLaurine M, Bledsoe G (1996) Morphometry of the human pulmonary vasculature. J Appl Physiol 81:2123–2133

    PubMed  CAS  Google Scholar 

  11. Burrowes KS, Hunter PJ, Tawhai MH (2005) Investigation of the relative effects of vascular branching structure and gravity on pulmonary arterial blood flow heterogeneity via an image-based computational model. Acad Radiol 12:1464–1474

    Article  PubMed  Google Scholar 

  12. Burrowes KS, Hunter PJ, Tawhai MH (2005) Anatomically based finite element models of the human pulmonary arterial and venous trees including supernumerary vessels. J Appl Physiol 99:731–738

    Article  PubMed  Google Scholar 

  13. Burrowes KS, Tawhai MH (2006) Computational predictions of pulmonary blood flow gradients: gravity versus structure. Respir Physiol Neurobiol 154:515–523

    Article  PubMed  Google Scholar 

  14. Zhuang FY, Fung YC, Yen RT (1983) Analysis of blood flow in cat’s lung with detailed anatomical and elasticity data. J Appl Physiol 55:1341–1348

    PubMed  CAS  Google Scholar 

  15. Hakim TS, Michel RP, Chang HK (1982) Effect of lung inflation on pulmonary vascular resistance by arterial and venous occlusion. J Appl Physiol 53:1110–1115

    Article  PubMed  CAS  Google Scholar 

  16. Pellett AA, Lord KC, Champagne MS, deBoisblanc BP, Johnson RW, Levitzky MG (2002) Pulmonary capillary pressure during acute lung injury in dogs. Crit Care Med 30:403–409

    Article  PubMed  Google Scholar 

  17. Brody JS, Stemmler EJ, DuBois AB (1968) Longitudinal distribution of vascular resistance in the pulmonary arteries, capillaries, and veins. J Clin Invest 47:783–799

    Article  PubMed  CAS  Google Scholar 

  18. Fike CD, Kaplowitz MR (1991) Longitudinal distribution of pulmonary vascular pressures as a function of postnatal age in rabbits. J Appl Physiol 71:2160–2167

    PubMed  CAS  Google Scholar 

  19. Fronek K, Zweifach BW (1974) Pre- and postcapillary resistances in cat mesentery. Microvasc Res 7:351–361

    Article  PubMed  CAS  Google Scholar 

  20. Gaar KA Jr, Taylor AE, Owens LJ, Guyton AC (1967) Pulmonary capillary pressure and filtration coefficient in the isolated perfused lung. Am J Physiol 213:910–914

    PubMed  Google Scholar 

  21. Chandran KB, Yoganathan AP, Rittgers SE (2007) Biofluid mechanics the human circulation. CRC, Boca Raton

    Google Scholar 

  22. Hayashi K, Stergiopulos N, Meister J-J, Greenwald SE, Rachev A (2001) Techniques in the determination of the mechanical properties and constitutive laws of arterial wall. In: Leondes C (ed) Cardiovascular techniques – biomechanical systems techniques and applications. CRC, Boca Raton

    Google Scholar 

  23. Lakes RS (1999) Viscoelastic solids. CRC, Boca Raton

    Google Scholar 

  24. Westerhof N, Stergiopulos N, Noble MIM (2005) Snapshots of hemodynamics an aid for clinical research and graduate education. Springer, New York

    Google Scholar 

  25. Gan CT, Lankhaar JW, Westerhof N et al (2007) Noninvasively assessed pulmonary artery stiffness predicts mortality in pulmonary arterial hypertension. Chest 132:1906–1912

    Article  PubMed  Google Scholar 

  26. Gozna ER, Marble AE, Shaw A, Holland JG (1974) Age-related changes in the mechanics of the aorta and pulmonary artery of man. J Appl Physiol 36:407–411

    PubMed  CAS  Google Scholar 

  27. Jarmakani JM, Graham TP Jr, Benson DW Jr, Canent RV Jr, Greenfield JC Jr (1971) In vivo pressure-radius relationships of the pulmonary artery in children with congenital heart disease. Circulation 43:585–592

    PubMed  CAS  Google Scholar 

  28. Patel DJ, De Freitas FM, Greenfield JC Jr, Fry DL (1963) Relationship of radius to pressure along the aorta in living dogs. J Appl Physiol 18:1111–1117

    PubMed  CAS  Google Scholar 

  29. Luchsinger PC, Sachs M, Patel DJ (1962) Pressure-radius relationship in large blood vessels of man. Circ Res 11:885–888

    PubMed  CAS  Google Scholar 

  30. Banks J, Booth FV, MacKay EH, Rajagopalan B, Lee GD (1978) The physical properties of human pulmonary arteries and veins. Clin Sci Mol Med 55:477–484

    PubMed  CAS  Google Scholar 

  31. Hislop A, Reid L (1976) New findings in pulmonary arteries of rats with hypoxia-induced pulmonary hypertension. Br J Exp Pathol 57:542–554

    PubMed  CAS  Google Scholar 

  32. Fung YC, Liu SQ (1991) Changes of zero-stress state of rat pulmonary arteries in hypoxic hypertension. J Appl Physiol 70:2455–2470

    Article  PubMed  CAS  Google Scholar 

  33. Liu SQ (1996) Alterations in structure of elastic laminae of rat pulmonary arteries in hypoxic hypertension. J Appl Physiol 81:2147–2155

    PubMed  CAS  Google Scholar 

  34. Huang W, Delgado-West D, Wu JT, Fung YC (2001) Tissue remodeling of rat pulmonary artery in hypoxic breathing. II. Course of change of mechanical properties. Ann Biomed Eng 29:552–562

    Article  PubMed  CAS  Google Scholar 

  35. Huang W, Sher YP, Delgado-West D, Wu JT, Peck K, Fung YC (2001) Tissue remodeling of rat pulmonary artery in hypoxic breathing. I. Changes of morphology, zero-stress state, and gene expression. Ann Biomed Eng 29:535–551

    Article  PubMed  CAS  Google Scholar 

  36. Drexler ES, McCowan CN, Wright JE, Slifka AJ, Ivy DD, Shandas R (2004) Comparison of strength properties of normotensive and hypertensive rat pulmonary arteries. Biomed Sci Instrum 40:297–302

    PubMed  CAS  Google Scholar 

  37. Kobs RW, Muvarak NE, Eickhoff JC, Chesler NC (2005) Linked mechanical and biological aspects of remodeling in mouse pulmonary arteries with hypoxia-induced hypertension. Am J Physiol Heart Circ Physiol 288:H1209–H1217

    Article  PubMed  CAS  Google Scholar 

  38. Drexler ES, Quinn TP, Slifka AJ et al (2007) Comparison of mechanical behavior among the extrapulmonary arteries from rats. J Biomech 40:812–819

    Article  PubMed  CAS  Google Scholar 

  39. Kobs RW, Chesler NC (2006) The mechanobiology of pulmonary vascular remodeling in the congenital absence of eNOS. Biomech Model Mechanobiol 5:217–225

    Article  PubMed  Google Scholar 

  40. Lammers SR, Kao PH, Qi HJ et al (2008) Changes in the structure-function relationship of elastin and its impact on the proximal pulmonary arterial mechanics of hypertensive calves. Am J Physiol Heart Circ Physiol 295:H1451–H1459

    Article  PubMed  CAS  Google Scholar 

  41. Huang W, Tian Y, Gao J, Yen RT (1998) Comparison of theory and experiment in pulsatile flow in cat lung. Ann Biomed Eng 26:812–820

    Article  PubMed  CAS  Google Scholar 

  42. Chesler NC, Thompson-Figueroa J, Millburne K (2004) Measurements of mouse pulmonary artery biomechanics. J Biomech Eng 126:309–314

    Article  PubMed  Google Scholar 

  43. Stenmark KR, Fagan KA, Frid MG (2006) Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res 99:675–691

    Article  PubMed  CAS  Google Scholar 

  44. Durmowicz AG, Orton EC, Stenmark KR (1993) Progressive loss of vasodilator responsive component of pulmonary hypertension in neonatal calves exposed to 4,570m. Am J Physiol Heart Circ Physiol 265:H2175–H2183

    CAS  Google Scholar 

  45. Fagan KA, Oka M, Bauer NR et al (2004) Attenuation of acute hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension in mice by inhibition of Rho-kinase. Am J Physiol Lung Cell Mol Physiol 287:L656–L664

    Article  PubMed  CAS  Google Scholar 

  46. Hyvelin J-M, Howell K, Nichol A, Costello CM, Preston RJ, McLoughlin P (2005) Inhibition of Rho-kinase attenuates hypoxia-induced angiogenesis in the pulmonary circulation. Circ Res 97:185–191

    Article  PubMed  CAS  Google Scholar 

  47. Nagaoka T, Fagan KA, Gebb SA et al (2005) Inhaled Rho kinase inhibitors are potent and selective vasodilators in rat pulmonary hypertension. Am J Respir Crit Care Med 171: 494–499

    Article  PubMed  Google Scholar 

  48. Shifren A, Durmowicz AG, Knutsen RH, Faury G, Mecham RP (2008) Elastin insufficiency predisposes to elevated pulmonary circulatory pressures through changes in elastic artery structure. J Appl Physiol 105:1610–1619

    Article  PubMed  Google Scholar 

  49. Durmowicz AG, Parks WC, Hyde DM, Mecham RP, Stenmark KR (1994) Persistence, re-expression, and induction of pulmonary arterial fibronectin, tropoelastin, and type I procollagen mRNA expression in neonatal hypoxic pulmonary hypertension. Am J Pathol 145:1411–1420

    PubMed  CAS  Google Scholar 

  50. Stenmark KR, Durmowicz AG, Roby JD, Mecham RP, Parks WC (1994) Persistence of the fetal pattern of tropoelastin gene expression in severe neonatal bovine pulmonary hypertension. J Clin Invest 93:1234–1242

    Article  PubMed  CAS  Google Scholar 

  51. Estrada KD, Chesler NC (2009) Collagen-related gene and protein expression changes in the lung in response to chronic hypoxia. Biomech Model Mechanobiol 8(4):263–272

    Google Scholar 

  52. Tozzi CA, Christiansen DL, Poiani GJ, Riley DJ (1994) Excess collagen in hypertensive pulmonary arteries decreases vascular distensibility. Am J Respir Crit Care Med 149:1317–1326

    PubMed  CAS  Google Scholar 

  53. Zhang Y, Dunn ML, Drexler ES et al (2005) A microstructural hyperelastic model of pulmonary arteries under normo- and hypertensive conditions. Ann Biomed Eng 33:1042–1052

    Article  PubMed  Google Scholar 

  54. Lucas CL (1980) Fluid mechanics of the pulmonary circulation. CRC Crit Rev Biomed Eng 10:317–393

    Google Scholar 

  55. Elliott FM, Reid L (1965) Some new facts about the pulmonary artery and its branching pattern. Clin Radiol 16:193–198

    Article  PubMed  CAS  Google Scholar 

  56. Nichols WW, O’Rourke MF (2005) McDonald’s blood flow in arteries theoretical, experimental and clinical principles, 5th edn. Hodder Arnold, London

    Google Scholar 

  57. Yen RT, Fung YC, Bingham N (1980) Elasticity of small pulmonary arteries in the cat. J Biomech Eng 102:170–177

    Article  PubMed  CAS  Google Scholar 

  58. Cox RH (1982) Comparison of mechanical and chemical properties of extra- and intralobar canine pulmonary arteries. Am J Physiol 242:H245–H253

    PubMed  CAS  Google Scholar 

  59. Caro CG, Saffman PG (1965) Extensibility of blood vessels in isolated rabbit lungs. J Physiol 178:193–210

    PubMed  CAS  Google Scholar 

  60. Ferenza C (1969) Pulmonary arterial design in mammals: morphologic variation and physiologic constancy. Johns Hopkins Med J 125:207

    Google Scholar 

  61. Al-Tinawi A, Madden JA, Dawson CA, Linehan JH, Harder DR, Rickaby DA (1991) Distensibility of small arteries of the dog lung. J Appl Physiol 71:1714–1722

    PubMed  CAS  Google Scholar 

  62. Madden JA, Keller PA, Effros RM, Seavitte C, Choy JS, Hacker AD (1994) Responses to pressure and vasoactive agents by isolated pulmonary arteries from monocrotaline-treated rats. J Appl Physiol 76:1589–1593

    PubMed  CAS  Google Scholar 

  63. Karau KL, Molthen RC, Dhyani A et al (2001) Pulmonary arterial morphometry from microfocal X-ray computed tomography. Am J Physiol Heart Circ Physiol 281:H2747–H2756

    PubMed  CAS  Google Scholar 

  64. Clough AV, Krenz GS, Owens M, Al-Tinawi A, Dawson CA, Linehan JH (1991) An algorithm for angiographic estimation of blood vessel diameter. J Appl Physiol 71:2050–2058

    PubMed  CAS  Google Scholar 

  65. Hughes J, Morrell N (2001) Pulmonary circulation from basic mechanisms to clinical practice. Imperial College Press, London

    Google Scholar 

  66. Fung YC (1996) Biomechanics: circulation, 2nd edn. Springer, New York

    Google Scholar 

  67. Fung YC, Sobin SS (1972) Pulmonary alveolar blood flow. Circ Res 30:470–490

    PubMed  CAS  Google Scholar 

  68. Fung YC, Sobin SS (1972) Elasticity of the pulmonary alveolar sheet. Circ Res 30:451–469

    PubMed  CAS  Google Scholar 

  69. Culver BH, Butler J (1980) Mechanical influences on the pulmonary microcirculation. Annu Rev Physiol 42:187–198

    Article  PubMed  CAS  Google Scholar 

  70. Permutt S, Howell JB, Proctor DF, Riley RL (1961) Effect of lung inflation on static pressure-volume characteristics of pulmonary vessels. J Appl Physiol 16:64–70

    PubMed  CAS  Google Scholar 

  71. Rabinovitch M, Chesler N, Molthen RC (2007) Point: counterpoint: chronic hypoxia-induced pulmonary hypertension does/does not lead to loss of pulmonary vasculature. J Appl Physiol 103:1449–1451

    Article  PubMed  Google Scholar 

  72. Milnor WR (1989) Hemodynamics, 2nd edn. Williams & Wilkins, Baltimore

    Google Scholar 

  73. Caro CG, Mc DD (1961) The relation of pulsatile pressure and flow in the pulmonary vascular bed. J Physiol 157:426–453

    PubMed  CAS  Google Scholar 

  74. Westerhof N, Lankhaar JW, Westerhof BE (2009) The arterial Windkessel. Med Biol Eng Comput 47:131–141

    Google Scholar 

  75. Laskey WK, Ferrari VA, Palevsky HI, Kussmaul WG (1993) Pulmonary artery hemodynamics in primary pulmonary hypertension. J Am Coll Cardiol 21:406–412

    Article  PubMed  CAS  Google Scholar 

  76. Ewalenko P, Brimioulle S, Delcroix M, Lejeune P, Naeije R (1997) Comparison of the effects of isoflurane with those of propofol on pulmonary vascular impedance in experimental embolic pulmonary hypertension. Br J Anaesth 79:625–630

    PubMed  CAS  Google Scholar 

  77. Maggiorini M, Brimioulle S, De Canniere D, Delcroix M, Wauthy P, Naeije R (1995) Pulmonary vascular impedance response to hypoxia in dogs and minipigs: effects of inhaled nitric oxide. J Appl Physiol 79:1156–1162

    PubMed  CAS  Google Scholar 

  78. Tuchscherer HA, Webster EB, Chesler NC (2006) Pulmonary vascular resistance and impedance in isolated mouse lungs: effects of pulmonary emboli. Ann Biomed Eng 34:660–668

    Article  PubMed  Google Scholar 

  79. Tuchscherer HA, Vanderpool RR, Chesler NC (2007) Pulmonary vascular remodeling in isolated mouse lungs: effects on pulsatile pressure-flow relationships. J Biomech 40:993–1001

    Article  PubMed  Google Scholar 

  80. Grant BJ, Paradowski LJ (1987) Characterization of pulmonary arterial input impedance with lumped parameter models. Am J Physiol 252:H585–H593

    PubMed  CAS  Google Scholar 

  81. Glenny RW, Robertson HT (1995) A computer simulation of pulmonary perfusion in three dimensions. J Appl Physiol 79:357–369

    PubMed  CAS  Google Scholar 

  82. Krenz GS, Linehan JH, Dawson CA (1992) A fractal continuum model of the pulmonary arterial tree. J Appl Physiol 72:2225–2237

    PubMed  CAS  Google Scholar 

  83. Olufsen MS (1999) Structured tree outflow condition for blood flow in larger systemic arteries. Am J Physiol 276:H257–H268

    PubMed  CAS  Google Scholar 

  84. Steele BN, Olufsen MS, Taylor CA (2007) Fractal network model for simulating abdominal and lower extremity blood flow during resting and exercise conditions. Comput Methods Biomech Biomed Eng 10:39–51

    Article  Google Scholar 

  85. Spilker RL, Feinstein JA, Parker DW, Reddy VM, Taylor CA (2007) Morphometry-based impedance boundary conditions for patient-specific modeling of blood flow in pulmonary arteries. Ann Biomed Eng 35:546–559

    Article  PubMed  Google Scholar 

  86. Huez S, Brimioulle S, Naeije R, Vachiery JL (2004) Feasibility of routine pulmonary arterial impedance measurements in pulmonary hypertension. Chest 125:2121–2128

    Article  PubMed  Google Scholar 

  87. Hunter KS, Lee PF, Lanning CJ et al (2008) Pulmonary vascular input impedance is a combined measure of pulmonary vascular resistance and stiffness and predicts clinical outcomes better than pulmonary vascular resistance alone in pediatric patients with pulmonary hypertension. Am Heart J 155:166–174

    Article  PubMed  Google Scholar 

  88. Lankhaar JW, Westerhof N, Faes TJ et al (2008) Pulmonary vascular resistance and compliance stay inversely related during treatment of pulmonary hypertension. Eur Heart J 29:1688–1695

    Article  PubMed  Google Scholar 

  89. Nollen GJ, Groenink M, van der Wall EE, Mulder BJ (2002) Current insights in diagnosis and management of the ­cardiovascular complications of Marfan’s syndrome. Cardiol Young 12:320–327

    Article  PubMed  Google Scholar 

  90. Nollen GJ, van Schijndel KE, Timmermans J et al (2002) Pulmonary artery root dilatation in Marfan syndrome: quantitative assessment of an unknown criterion. Heart 87:470–471

    Article  PubMed  CAS  Google Scholar 

  91. Yousem SA (1990) The pulmonary pathologic manifestations of the CREST syndrome. Hum Pathol 21:467–474

    Article  PubMed  CAS  Google Scholar 

  92. Huez S, Roufosse F, Vachiery JL et al (2007) Isolated right ventricular dysfunction in systemic sclerosis: latent pulmonary hypertension? Eur Respir J 30:928–936

    Article  PubMed  CAS  Google Scholar 

  93. Vonk Noordegraaf A, Naeije R (2008) Right ventricular function in scleroderma-related pulmonary hypertension. Rheumatology (Oxford) 47(Suppl 5):v42–v43

    Article  Google Scholar 

  94. Fouty B (2008) Diabetes and the pulmonary circulation. Am J Physiol Lung Cell Mol Physiol 295:L725–L726

    Article  PubMed  CAS  Google Scholar 

  95. Lopez-Lopez JG, Moral-Sanz J, Frazziano G et al (2008) Diabetes induces pulmonary artery endothelial dysfunction by NADPH oxidase induction. Am J Physiol Lung Cell Mol Physiol 295:L727–L732

    Article  PubMed  CAS  Google Scholar 

  96. Blanco S, Penin R, Casas I, Lopez D, Romero R (2002) Effects of antihypertensive drugs in experimental type 2 diabetes-related nephropathy. Kidney Int Suppl 62:S27–S31

    Google Scholar 

  97. Reesink HJ, Henneman OD, van Delden OM et al (2007) Pulmonary arterial stent implantation in an adult with Williams syndrome. Cardiovasc Intervent Radiol 30:782–785

    Article  PubMed  Google Scholar 

  98. Land SD, Shah MD, Berman WF (1994) Pulmonary hypertension associated with portal hypertension in a child with Williams syndrome – a case report. Pediatr Pathol 14:61–68

    Article  PubMed  CAS  Google Scholar 

  99. Feintuch A, Ruengsakulrach P, Lin A et al (2007) Hemodynamics in the mouse aortic arch as assessed by MRI, ultrasound, and numerical modeling. Am J Physiol Heart Circ Physiol 292:H884–H892

    Article  PubMed  CAS  Google Scholar 

  100. Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79:144–152

    Article  PubMed  CAS  Google Scholar 

  101. Peyton SR, Kim PD, Ghajar CM, Seliktar D, Putnam AJ (2008) The effects of matrix stiffness and RhoA on the phenotypic plasticity of smooth muscle cells in a 3-D biosynthetic hydrogel system. Biomaterials 29:2597–2607

    Article  PubMed  CAS  Google Scholar 

  102. Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7:265–275

    Article  PubMed  CAS  Google Scholar 

  103. Peyton SR, Ghajar CM, Khatiwala CB, Putnam AJ (2007) The emergence of ECM mechanics and cytoskeletal tension as important regulators of cell function. Cell Biochem Biophys 47:300–320

    Article  PubMed  CAS  Google Scholar 

  104. Matsuzaki T (1994) Pulmonary vascular input impedance in patients with atrial septal defect. Acta Med Nagasaki 39:107–113

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomi C. Chesler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Roldán-Alzate, A., Chesler, N.C. (2011). Pulmonary Vascular Mechanics. In: Yuan, JJ., Garcia, J., West, J., Hales, C., Rich, S., Archer, S. (eds) Textbook of Pulmonary Vascular Disease. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-87429-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-87429-6_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-87428-9

  • Online ISBN: 978-0-387-87429-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics