Skip to main content

Oxygen-Sensitive Transcription Factors and Hypoxia-Mediated Pulmonary Hypertension

  • Chapter
  • First Online:
Textbook of Pulmonary Vascular Disease

Abstract

Dynamic changes in oxygen partial pressure (pO2) constitute a potential signaling mechanism for the regulation of expression and activation of oxygen-responsive transcription factors. Hypoxia might affect tissues or even the whole body: defective oxygen uptake in the lung, impaired oxygen transport capacity in the blood, or lower pO2 in the environment, as experienced at high altitude. The reaction to this potentially life-threatening situation requires hypoxia-dependent gene regulation that induces a variety of specific adaptation mechanisms that ensure survival at cellular and systemic levels alike. Once exposed to hypoxia, the pulmonary and systemic vasculature, and potentially also the airway chemoreceptors, enables a corresponding response within seconds; changes in gene expression on the other hand require minutes to hours. To mediate these adaptive effects a range of oxygen-sensitive transcription factors play important roles. An adaptive response of the pulmonary circulation to low oxygen tension is the increase in pulmonary pressure. This is a self-regulatory mechanism for maintaining the optimal balance between ventilation and perfusion. During acute hypoxia, the vasoconstriction acts to reduce the perfusion of underventilated parts of the lungs and instead divert blood to well-ventilated regions, meaning that the acute response is mainly associated with a change in vascular tone. Chronic hypoxia and the resulting endothelial dysfunction, on the other hand, are associated with sustained pulmonary hypertension. This is a serious condition characterized by elevation in pulmonary arterial pressure. A constant elevation in pulmonary arterial pressure will lead to right ventricular hypertrophy and ultimately right ventricular failure and possibly death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Moraes DL, Colucci WS, Givertz MM (2000) Secondary pulmonary hypertension in chronic heart failure: the role of the endothelium in pathophysiology and management. Circulation 102:1718–1723

    PubMed  CAS  Google Scholar 

  2. Aaronson PI, Robertson TP, Ward JPT (2002) Endothelium-derived mediators and hypoxic pulmonary vasoconstriction. Respir Physiol Neurobiol 132:107–120

    PubMed  CAS  Google Scholar 

  3. Dumas JP, Bardou M, Goirand F, Dumas M (1999) Hypoxic pulmonary vasoconstriction. Gen Pharmacol 33:289–297

    PubMed  CAS  Google Scholar 

  4. Goldberg MA, Dunning SP, Bunn HF (1988) Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242:1412–1415

    PubMed  CAS  Google Scholar 

  5. Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE (1991) Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene. Proc Natl Acad Sci U S A 88:5680–5684

    PubMed  CAS  Google Scholar 

  6. Semenza GL, Wang GL (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12:5447–5454

    PubMed  CAS  Google Scholar 

  7. Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92:5510–5514

    PubMed  CAS  Google Scholar 

  8. Wang GL, Semenza GL (1995) Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270:1230–1237

    PubMed  CAS  Google Scholar 

  9. Bunn HF, Poyton RO (1996) Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 76:839–885

    PubMed  CAS  Google Scholar 

  10. Semenza GL (2004) Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology (Bethesda) 19:176–182

    CAS  Google Scholar 

  11. Hoffman EC, Reyes H, Chu FF et al (1991) Cloning of a factor required for activity of the Ah (dioxin) receptor. Science 252:954–958

    PubMed  CAS  Google Scholar 

  12. Gradin K, McGuire J, Wenger RH et al (1996) Functional interference between hypoxia and dioxin signal transduction pathways: competition for recruitment of the Arnt transcription factor. Mol Cell Biol 16:5221–5231

    PubMed  CAS  Google Scholar 

  13. Salceda S, Beck I, Caro J (1996) Absolute requirement of aryl hydrocarbon receptor nuclear translocator protein for gene activation by hypoxia. Arch Biochem Biophys 334:389–394

    PubMed  CAS  Google Scholar 

  14. Wood SM, Gleadle JM, Pugh CW, Hankinson O, Ratcliffe PJ (1996) The role of the aryl hydrocarbon receptor nuclear translocator (ARNT) in hypoxic induction of gene expression. Studies in ARNT-deficient cells. J Biol Chem 271:15117–15123

    PubMed  CAS  Google Scholar 

  15. Chilov D, Camenisch G, Kvietikova I, Ziegler U, Gassmann M, Wenger RH (1999) Induction and nuclear translocation of hypoxia-inducible factor-1 (HIF-1): heterodimerization with ARNT is not necessary for nuclear accumulation of HIF-1α. J Cell Sci 112:1203–1212

    PubMed  CAS  Google Scholar 

  16. Kallio PJ, Okamoto K, O’Brien S et al (1998) Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1α. EMBO J 17:6573–6586

    PubMed  CAS  Google Scholar 

  17. Huang LE, Arany Z, Livingston DM, Bunn HF (1996) Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its α subunit. J Biol Chem 271:32253–32259

    PubMed  CAS  Google Scholar 

  18. Jewell UR, Kvietikova I, Scheid A, Bauer C, Wenger RH, Gassmann M (2001) Induction of HIF-1α in response to hypoxia is instantaneous. FASEB J 15:1312–1314

    PubMed  CAS  Google Scholar 

  19. Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujii-Kuriyama Y (1997) A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1 α regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci U S A 94:4273–4278

    PubMed  CAS  Google Scholar 

  20. Wiesener MS, Jurgensen JS, Rosenberger C et al (2003) Widespread hypoxia-inducible expression of HIF-2 α in distinct cell populations of different organs. FASEB J 17:271–273

    PubMed  CAS  Google Scholar 

  21. Tian H, Hammer RE, Matsumoto AM, Russell DW, McKnight SL (1998) The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev 12:3320–3324

    PubMed  CAS  Google Scholar 

  22. Makino Y, Cao R, Svensson K et al (2001) Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414:550–554

    PubMed  CAS  Google Scholar 

  23. Makino Y, Kanopka A, Wilson WJ, Tanaka H, Poellinger L (2002) Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3α locus. J Biol Chem 277:32405–32408

    PubMed  CAS  Google Scholar 

  24. Huang LE, Gu J, Schau M, Bunn HF (1998) Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A 95:7987–7992

    PubMed  CAS  Google Scholar 

  25. Pugh CW, O’Rourke JF, Nagao M, Gleadle JM, Ratcliffe PJ (1997) Activation of hypoxia-inducible factor-1; definition of regulatory domains within the α subunit. J Biol Chem 272:11205–11214

    PubMed  CAS  Google Scholar 

  26. Ivan M, Kondo K, Yang H et al (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–468

    PubMed  CAS  Google Scholar 

  27. Jaakkola P, Mole DR, Tian YM et al (2001) Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472

    PubMed  CAS  Google Scholar 

  28. Bruick RK, McKnight SL (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294:1337–1340

    PubMed  CAS  Google Scholar 

  29. Stebbins CE, Kaelin WG Jr, Pavletich NP (1999) Structure of the VHL-elonginC-elonginB complex: implications for VHL tumor suppressor function. Science 284:455–461

    PubMed  CAS  Google Scholar 

  30. Maxwell PH, Wiesener MS, Chang GW et al (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275

    PubMed  CAS  Google Scholar 

  31. Krek W (2000) VHL takes HIF’s breath away. Nat Cell Biol 2:E121–E123

    PubMed  CAS  Google Scholar 

  32. Kamura T, Sato S, Iwai K, Czyzyk-Krzeska M, Conaway RC, Conaway JW (2000) Activation of HIF1α ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proc Natl Acad Sci U S A 97:10430–10435

    PubMed  CAS  Google Scholar 

  33. Harris AL (2002) Hypoxia – a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47

    PubMed  CAS  Google Scholar 

  34. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732

    PubMed  CAS  Google Scholar 

  35. Wenger RH, Stiehl DP, Camenisch G (2005) Integration of oxygen signaling at the consensus HRE. Sci STKE 2005:re12

    Google Scholar 

  36. Elvidge GP, Glenny L, Appelhoff RJ, Ratcliffe PJ, Ragoussis J, Gleadle JM (2006) Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: the role of HIF-1α, HIF-2α, and other pathways. J Biol Chem 281:15215–15226

    PubMed  CAS  Google Scholar 

  37. Manalo DJ, Rowan A, Lavoie T et al (2005) Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105:659–669

    PubMed  CAS  Google Scholar 

  38. Yu AY, Shimoda LA, Iyer NV et al (1999) Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1α. J Clin Invest 103:691–696

    PubMed  CAS  Google Scholar 

  39. Brusselmans K, Compernolle V, Tjwa M et al (2003) Heterozygous deficiency of hypoxia-inducible factor-2 α protects mice against pulmonary hypertension and right ventricular dysfunction during prolonged hypoxia. J Clin Invest 111:1519–1527

    PubMed  CAS  Google Scholar 

  40. Barer GR, Bee D, Wach RA (1983) Contribution of polycythaemia to pulmonary hypertension in simulated high altitude in rats. J Physiol 336:27–38

    PubMed  CAS  Google Scholar 

  41. Carlini RG, Dusso AS, Obialo CI, Alvarez UM, Rothstein M (1993) Recombinant human erythropoietin (rHuEPO) increases endothelin-1 release by endothelial cells. Kidney Int 43:1010–1014

    PubMed  CAS  Google Scholar 

  42. Vogel V, Kramer HJ, Backer A, Meyer-Lehnert H, Jelkmann W, Fandrey J (1997) Effects of erythropoietin on endothelin-1 synthesis and the cellular calcium messenger system in vascular endothelial cells. Am J Hypertens 10:289–296

    PubMed  CAS  Google Scholar 

  43. Voelkel NF, Hoeper M, Maloney J, Tuder RM (1996) Vascular endothelial growth factor in pulmonary hypertension. Ann N Y Acad Sci 796:186–193

    PubMed  CAS  Google Scholar 

  44. Hänze J, Weissmann N, Grimminger F, Seeger W, Rose F (2007) Cellular and molecular mechanisms of hypoxia-inducible factor driven vascular remodeling. Thromb Haemost 97:774–787

    PubMed  Google Scholar 

  45. Eddahibi S, Fabre V, Boni C et al (1999) Induction of serotonin transporter by hypoxia in pulmonary vascular smooth muscle cells. Relationship with the mitogenic action of serotonin. Circ Res 84:329–336

    PubMed  CAS  Google Scholar 

  46. Greijer AE, van der Groep P, Kemming D et al (2005) Up-regulation of gene expression by hypoxia is mediated predominantly by hypoxia-inducible factor 1 (HIF-1). J Pathol 206:291–304

    PubMed  CAS  Google Scholar 

  47. Coulet F, Nadaud S, Agrapart M, Soubrier F (2003) Identification of hypoxia-response element in the human endothelial nitric-oxide synthase gene promoter. J Biol Chem 278:46230–46240

    PubMed  CAS  Google Scholar 

  48. Palmer LA, Semenza GL, Stoler MH, Johns RA (1998) Hypoxia induces type II NOS gene expression in pulmonary artery endothelial cells via HIF-1. Am J Physiol 274:L212–L219

    PubMed  CAS  Google Scholar 

  49. Steudel W, Ichinose F, Huang PL et al (1997) Pulmonary vasoconstriction and hypertension in mice with targeted disruption of the endothelial nitric oxide synthase (NOS 3) gene. Circ Res 81:34–41

    PubMed  CAS  Google Scholar 

  50. Ozaki M, Kawashima S, Yamashita T et al (2001) Reduced hypoxic pulmonary vascular remodeling by nitric oxide from the endothelium. Hypertension 37:322–327

    PubMed  CAS  Google Scholar 

  51. Shimoda LA, Manalo DJ, Sham JS, Semenza GL, Sylvester JT (2001) Partial HIF-1α deficiency impairs pulmonary arterial myocyte electrophysiological responses to hypoxia. Am J Physiol Lung Cell Mol Physiol 281:L202–L208

    PubMed  CAS  Google Scholar 

  52. Bonnet S, Michelakis ED, Porter CJ et al (2006) An abnormal mitochondrial-hypoxia inducible factor-1α-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation 113:2630–2641

    PubMed  CAS  Google Scholar 

  53. Shimoda LA, Fallon M, Pisarcik S, Wang J, Semenza GL (2006) HIF-1 regulates hypoxic induction of NHE1 expression and alkalinization of intracellular pH in pulmonary arterial myocytes. Am J Physiol Lung Cell Mol Physiol 291:L941–L949

    PubMed  CAS  Google Scholar 

  54. Wang J, Weigand L, Lu W, Sylvester JT, Semenza GL, Shimoda LA (2006) Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circ Res 98:1528–1537

    PubMed  CAS  Google Scholar 

  55. Chen F, Castranova V, Shi X, Demers LM (1999) New insights into the role of nuclear factor-κB, a ubiquitous transcription factor in the initiation of diseases. Clin Chem 45:7–17

    PubMed  CAS  Google Scholar 

  56. Finco TS, Baldwin AS (1995) Mechanistic aspects of NF-κB regulation: the emerging role of phosphorylation and proteolysis. Immunity 3:263–272

    PubMed  CAS  Google Scholar 

  57. Koong AC, Chen EY, Giaccia AJ (1994) Hypoxia causes the activation of nuclear factor κB through the phosphorylation of IκBα on tyrosine residues. Cancer Res 54:1425–1430

    PubMed  CAS  Google Scholar 

  58. Cummins EP, Taylor CT (2005) Hypoxia-responsive transcription factors. Pflugers Arch 450:363–371

    PubMed  CAS  Google Scholar 

  59. BelAiba RS, Djordjevic T, Bonello S et al (2006) The serum- and glucocorticoid-inducible kinase Sgk-1 is involved in pulmonary vascular remodeling: role in redox-sensitive regulation of tissue factor by thrombin. Circ Res 98:828–836

    PubMed  CAS  Google Scholar 

  60. Wojciak-Stothard B, Tsang LY, Paleolog E, Hall SM, Haworth SG (2006) Rac1 and RhoA as regulators of endothelial phenotype and barrier function in hypoxia-induced neonatal pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 290:L1173–L1182

    PubMed  CAS  Google Scholar 

  61. Belaiba RS, Bonello S, Zahringer C et al (2007) Hypoxia up-regulates hypoxia-inducible factor-1α transcription by involving phosphatidylinositol 3-kinase and nuclear factor κB in pulmonary artery smooth muscle cells. Mol Biol Cell 18:4691–4697

    PubMed  CAS  Google Scholar 

  62. Rius J, Guma M, Schachtrup C et al (2008) NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature 453:807–811

    PubMed  CAS  Google Scholar 

  63. Walmsley SR, Print C, Farahi N et al (2005) Hypoxia-induced neutrophil survival is mediated by HIF-1α -dependent NF-κB activity. J Exp Med 201:105–115

    PubMed  CAS  Google Scholar 

  64. Sawada H, Mitani Y, Maruyama J et al (2007) A nuclear factor-κB inhibitor pyrrolidine dithiocarbamate ameliorates pulmonary hypertension in rats. Chest 132:1265–1274

    PubMed  CAS  Google Scholar 

  65. Ortiz LA, Champion HC, Lasky JA et al (2002) Enalapril protects mice from pulmonary hypertension by inhibiting TNF-mediated activation of NF-κB and AP-1. Am J Physiol Lung Cell Mol Physiol 282:L1209–L1221

    PubMed  CAS  Google Scholar 

  66. Kliewer SA, Umesono K, Noonan DJ, Heyman RA, Evans RM (1992) Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 358:771–774

    PubMed  CAS  Google Scholar 

  67. Owen GI, Zelent A (2000) Origins and evolutionary diversification of the nuclear receptor superfamily. Cell Mol Life Sci 57:809–827

    PubMed  CAS  Google Scholar 

  68. Adams M, Reginato MJ, Shao D, Lazar MA, Chatterjee VK (1997) Transcriptional activation by peroxisome proliferator-activated receptor γ is inhibited by phosphorylation at a consensus mitogen-activated protein kinase site. J Biol Chem 272:5128–5132

    PubMed  CAS  Google Scholar 

  69. Yun Z, Maecker HL, Johnson RS, Giaccia AJ (2002) Inhibition of PPAR γ 2 gene expression by the HIF-1-regulated gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia. Dev Cell 2:331–341

    PubMed  CAS  Google Scholar 

  70. Li X, Kimura H, Hirota K et al (2007) Hypoxia reduces the expression and anti-inflammatory effects of peroxisome proliferator-activated receptor-γ in human proximal renal tubular cells. Nephrol Dial Transplant 22:1041–1051

    PubMed  CAS  Google Scholar 

  71. Lemberger T, Desvergne B, Wahli W (1996) Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology. Annu Rev Cell Dev Biol 12:335–363

    PubMed  CAS  Google Scholar 

  72. Bishop-Bailey D, Hla T (1999) Endothelial cell apoptosis induced by the peroxisome proliferator-activated receptor (PPAR) ligand 15-deoxy-Δ12, 14-prostaglandin J2. J Biol Chem 274:17042–17048

    PubMed  CAS  Google Scholar 

  73. Xin X, Yang S, Kowalski J, Gerritsen ME (1999) Peroxisome proliferator-activated receptor γ ligands are potent inhibitors of angiogenesis in vitro and in vivo. J Biol Chem 274:9116–9121

    PubMed  CAS  Google Scholar 

  74. Michael LF, Lazar MA, Mendelson CR (1997) Peroxisome proliferator-activated receptor γ1 expression is induced during cyclic adenosine monophosphate-stimulated differentiation of alveolar type II pneumonocytes. Endocrinology 138:3695–3703

    PubMed  CAS  Google Scholar 

  75. Crossno JT Jr, Garat CV, Reusch JE et al (2007) Rosiglitazone attenuates hypoxia-induced pulmonary arterial remodeling. Am J Physiol Lung Cell Mol Physiol 292:L885–L897

    PubMed  CAS  Google Scholar 

  76. Ameshima S, Golpon H, Cool CD et al (2003) Peroxisome proliferator-activated receptor γ (PPARγ) expression is decreased in pulmonary hypertension and affects endothelial cell growth. Circ Res 92:1162–1169

    PubMed  CAS  Google Scholar 

  77. Nisbet RE, Sutliff RL, Hart CM (2007) The role of peroxisome proliferator-activated receptors in pulmonary vascular disease. PPAR Res 2007:18797

    PubMed  Google Scholar 

  78. Thiel G, Cibelli G (2002) Regulation of life and death by the zinc finger transcription factor Egr-1. J Cell Physiol 193:287–292

    PubMed  CAS  Google Scholar 

  79. Yan SF, Lu J, Zou YS et al (2000) Protein kinase C-β and oxygen deprivation. A novel Egr-1-dependent pathway for fibrin deposition in hypoxemic vasculature. J Biol Chem 275:11921–11928

    PubMed  CAS  Google Scholar 

  80. Lo LW, Cheng JJ, Chiu JJ, Wung BS, Liu YC, Wang DL (2001) Endothelial exposure to hypoxia induces Egr-1 expression involving PKCα-mediated Ras/Raf-1/ERK1/2 pathway. J Cell Physiol 188:304–312

    PubMed  CAS  Google Scholar 

  81. Christy B, Nathans D (1989) DNA binding site of the growth factor-inducible protein Zif268. Proc Natl Acad Sci U S A 86:8737–8741

    PubMed  CAS  Google Scholar 

  82. Cao X, Mahendran R, Guy GR, Tan YH (1993) Detection and characterization of cellular EGR-1 binding to its recognition site. J Biol Chem 268:16949–16957

    PubMed  CAS  Google Scholar 

  83. Russo MW, Sevetson BR, Milbrandt J (1995) Identification of NAB1, a repressor of NGFI-A- and Krox20-mediated transcription. Proc Natl Acad Sci U S A 92:6873–6877

    PubMed  CAS  Google Scholar 

  84. Ehrengruber MU, Muhlebach SG, Sohrman S, Leutenegger CM, Lester HA, Davidson N (2000) Modulation of early growth response (EGR) transcription factor-dependent gene expression by using recombinant adenovirus. Gene 258:63–69

    PubMed  CAS  Google Scholar 

  85. Liu C, Rangnekar VM, Adamson E, Mercola D (1998) Suppression of growth and transformation and induction of apoptosis by EGR-1. Cancer Gene Ther 5:3–28

    PubMed  CAS  Google Scholar 

  86. Khachigian LM, Williams AJ, Collins T (1995) Interplay of Sp1 and Egr-1 in the proximal platelet-derived growth factor A-chain promoter in cultured vascular endothelial cells. J Biol Chem 270:27679–27686

    PubMed  CAS  Google Scholar 

  87. Yan SF, Lu J, Zou YS et al (1999) Hypoxia-associated induction of early growth response-1 gene expression. J Biol Chem 274:15030–15040

    PubMed  CAS  Google Scholar 

  88. Semenza GL (2000) Oxygen-regulated transcription factors and their role in pulmonary disease. Respir Res 1:159–162

    PubMed  CAS  Google Scholar 

  89. Nozik-Grayck E, Suliman HB, Majka S et al (2008) Lung EC-SOD overexpression attenuates hypoxic induction of Egr-1 and chronic hypoxic pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol 295:L422–L430

    PubMed  CAS  Google Scholar 

  90. Shaulian E, Karin M (2001) AP-1 in cell proliferation and survival. Oncogene 20:2390–2400

    PubMed  CAS  Google Scholar 

  91. Millhorn DE, Raymond R, Conforti L et al (1997) Regulation of gene expression for tyrosine hydroxylase in oxygen sensitive cells by hypoxia. Kidney Int 51:527–535

    PubMed  CAS  Google Scholar 

  92. Salnikow K, Kluz T, Costa M et al (2002) The regulation of hypoxic genes by calcium involves c-Jun/AP-1, which cooperates with hypoxia-inducible factor 1 in response to hypoxia. Mol Cell Biol 22:1734–1741

    PubMed  CAS  Google Scholar 

  93. Hoffmann A, Gloe T, Pohl U (2001) Hypoxia-induced upregulation of eNOS gene expression is redox-sensitive: a comparison between hypoxia and inhibitors of cell metabolism. J Cell Physiol 188:33–44

    PubMed  CAS  Google Scholar 

  94. Kvietikova I, Wenger RH, Marti HH, Gassmann M (1995) The transcription factors ATF-1 and CREB-1 bind constitutively to the hypoxia-inducible factor-1 (HIF-1) DNA recognition site. Nucleic Acids Res 23:4542–4550

    PubMed  CAS  Google Scholar 

  95. Minet E, Michel G, Mottet D et al (2001) c-JUN gene induction and AP-1 activity is regulated by a JNK-dependent pathway in hypoxic HepG2 cells. Exp Cell Res 265:114–124

    PubMed  CAS  Google Scholar 

  96. Fantozzi I, Zhang S, Platoshyn O, Remillard CV, Cowling RT, Yuan JX-J (2003) Hypoxia increases AP-1 binding activity by enhancing capacitative Ca2+ entry in human pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 285:L1233–L1245

    PubMed  CAS  Google Scholar 

  97. Hogan PG, Chen L, Nardone J, Rao A (2003) Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 17:2205–2232

    PubMed  CAS  Google Scholar 

  98. Wada H, Hasegawa K, Morimoto T et al (2002) Calcineurin-GATA-6 pathway is involved in smooth muscle-specific transcription. J Cell Biol 156:983–991

    PubMed  CAS  Google Scholar 

  99. Hung HF, Wang BW, Chang H, Shyu KG (2008) The molecular regulation of resistin expression in cultured vascular smooth muscle cells under hypoxia. J Hypertens 26:2349–2360

    PubMed  CAS  Google Scholar 

  100. Fujii T, Onohara N, Maruyama Y et al (2005) Gα12/13-mediated production of reactive oxygen species is critical for angiotensin receptor-induced NFAT activation in cardiac fibroblasts. J Biol Chem 280:23041–23047

    PubMed  CAS  Google Scholar 

  101. Nilsson LM, Nilsson-Ohman J, Zetterqvist AV, Gomez MF (2008) Nuclear factor of activated T-cells transcription factors in the vasculature: the good guys or the bad guys? Curr Opin Lipidol 19:483–490

    PubMed  CAS  Google Scholar 

  102. Bonnet S, Rochefort G, Sutendra G et al (2007) The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci U S A 104:11418–11423

    PubMed  CAS  Google Scholar 

  103. de Frutos S, Spangler R, Alo D, Bosc LV (2007) NFATc3 mediates chronic hypoxia-induced pulmonary arterial remodeling with α-actin up-regulation. J Biol Chem 282:15081–15089

    PubMed  Google Scholar 

  104. Said SI (2008) The vasoactive intestinal peptide gene is a key modulator of pulmonary vascular remodeling and inflammation. Ann N Y Acad Sci 1144:148–153

    PubMed  CAS  Google Scholar 

  105. Liu CZ, Tan JX, Wang Y, Huang YG, Huang DL (2005) L-type calcium channel blocker suppresses calcineurin signal pathway and development of right ventricular hypertrophy. J Formos Med Assoc 104:798–803

    PubMed  Google Scholar 

  106. Mayr B, Montminy M (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev 2:599–609

    CAS  Google Scholar 

  107. Euskirchen G, Royce TE, Bertone P et al (2004) CREB binds to multiple loci on human chromosome 22. Mol Cell Biol 24:3804–3814

    PubMed  CAS  Google Scholar 

  108. Klemm DJ, Watson PA, Frid MG et al (2001) cAMP response element-binding protein content is a molecular determinant of smooth muscle cell proliferation and migration. J Biol Chem 276:46132–46141

    PubMed  CAS  Google Scholar 

  109. Leonard MO, Howell K, Madden SF et al (2008) Hypoxia selectively activates the CREB family of transcription factors in the in vivo lung. Am J Respir Crit Care Med 178:977–983

    PubMed  CAS  Google Scholar 

  110. Kaluz S, Kaluzová M, Stanbridge EJ (2008) Regulation of gene expression by hypoxia: integration of the HIF-transduced hypoxic signal at the hypoxia-responsive element. Clin Chim Acta 395:6–13

    PubMed  CAS  Google Scholar 

  111. Rocha S (2007) Gene regulation under low oxygen: holding your breath for transcription. Trends Biochem Sci 32:389–397

    PubMed  CAS  Google Scholar 

  112. Fandrey J, Gorr TA, Gassmann M (2006) Regulating cellular oxygen sensing by hydroxylation. Cardiovasc Res 7(4):642–651

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Gassmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Østergaard, L., Schmid, V.H., Gassmann, M. (2011). Oxygen-Sensitive Transcription Factors and Hypoxia-Mediated Pulmonary Hypertension. In: Yuan, JJ., Garcia, J., West, J., Hales, C., Rich, S., Archer, S. (eds) Textbook of Pulmonary Vascular Disease. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-87429-6_49

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-87429-6_49

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-87428-9

  • Online ISBN: 978-0-387-87429-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics