Skip to main content

Pulmonary Vascular Development

  • Chapter
  • First Online:
Textbook of Pulmonary Vascular Disease

Abstract

The vascular beds of the adult lung, the pulmonary and bronchial circulations, are formed by extensive branching systems of large and small arteries and veins, and capillary networks. The focus of this chapter is the development of the pulmonary circulation in the normal lung as this evolves through the embryo/fetus to birth and the postnatal stage; and its continued development through childhood to the adult. In principle, the central large pulmonary arteries and pulmonary veins have a wall structure that reflects their role as conduits of deoxygenated or oxygenated blood. In addition to this function, the distal vascular loops of small thin-walled pulmonary (precapillary) arteries, capillaries, and (postcapillary) veins, which together form the lung’s microcirculation, serve as part of a gas-exchange surface for blood transiting this complex network. Blood vessels form and assemble networks in a series of elegant and intricate steps. Since the lung’s vasculature cannot develop in isolation from its airways, the mechanisms of morphogenesis discussed include, in brief, ones regulating specification of the lung primordium, and the early formation of the lung bud and airways. Mechanisms of alveologenesis, as these pertain to capillary bed formation, are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deffebach ME, Charan NB, Lakshminarayan S, Butler J (1987) The bronchial circulation. Small, but a vital attribute of the lung. Am Rev Respir Dis 135:463–481

    PubMed  CAS  Google Scholar 

  2. Deffebach ME, Widdicombe J (1991) The bronchial circulation. In: Crystal RG, West JB, Barnes PJ, Cherniack NS, Weibel ER (eds) The lung: scientific foundations. Raven, New York, pp 741–757

    Google Scholar 

  3. Leak LV, Ferrans VJ (1991) Lymphatics and lymphoid tissue. In: Crystal RG, West JB, Barnes PJ, Cherniack NS, Weibel ER (eds) The lung: scientific foundations. Raven, New York, pp 779–786

    Google Scholar 

  4. Leak LV, Jamuar MP (1983) Ultrastructure of pulmonary lymphatic vessels. Am Rev Respir Dis 128:S59–S65

    PubMed  CAS  Google Scholar 

  5. Karkkainen MJ, Haiko P, Sainio K et al (2004) Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5:74–80

    PubMed  CAS  Google Scholar 

  6. Lohela M, Saaristo A, Veikkola T, Alitalo K (2003) Lymphangiogenic growth factors, receptors and therapies. Thromb Haemost 90:167–184

    PubMed  CAS  Google Scholar 

  7. Mallory BP, Mead TJ, Wiginton DA, Kulkarni RM, Greenberg JM, Akeson AL (2006) Lymphangiogenesis in the developing lung promoted by VEGF-A. Microvasc Res 72:62–73

    PubMed  CAS  Google Scholar 

  8. Saharinen P, Petrova TV (2004) Molecular regulation of lymphangiogenesis. Ann N Y Acad Sci 1014:76–87

    PubMed  CAS  Google Scholar 

  9. Hislop A, Reid L (1972) Intra-pulmonary arterial development during fetal life-branching pattern and structure. J Anat 113:35–48

    PubMed  CAS  Google Scholar 

  10. Hislop A, Reid L (1973) Fetal and childhood development of the intrapulmonary veins in man – branching pattern and structure. Thorax 28:313–319

    PubMed  CAS  Google Scholar 

  11. Reid LM (1979) The pulmonary circulation: remodeling in growth and disease. The 1978 J. Burns Amberson lecture. Am Rev Respir Dis 119:531–546

    PubMed  CAS  Google Scholar 

  12. Davies G, Reid L (1970) Growth of the alveoli and pulmonary arteries in childhood. Thorax 25:669–681

    PubMed  CAS  Google Scholar 

  13. Hislop A, Reid L (1973) The similarity of the pulmonary artery branching system in siblings. Forensic Sci 2:37–52

    PubMed  CAS  Google Scholar 

  14. Hislop A, Reid L (1973) Pulmonary arterial development during childhood: branching pattern and structure. Thorax 28:129–135

    PubMed  CAS  Google Scholar 

  15. Hislop A, Reid L (1977) Formation of the pulmonary vasculature. In: Hodson WA, Lenfant C (eds) Lung biology in health and disease. Dekker, New York, pp 37–86

    Google Scholar 

  16. Hislop A, Reid LM (1981) Growth and development of the respiratory system: anatomical development. In: Davis JA, Dobbing J (eds) Scientific foundations of pediatrics, 2nd edn. Heinemann, London, pp 390–431

    Google Scholar 

  17. Burri PH, Moschopulos M (1992) Structural analysis of fetal rat lung development. Anat Rec 234:399–418

    PubMed  CAS  Google Scholar 

  18. Burri PH (1991) Postnatal development and growth. In: Crystal RG, West JB, Barnes PJ, Cherniack NS, Weibel ER (eds) The lung: scientific foundations. Raven, New York, pp 677–687

    Google Scholar 

  19. Farrell PM (1982) Morphologic aspects of lung maturation. In: Farrell PM (ed) Lung development: biological and clinical perspectives: neonatal respiratory distress. Academic, New York, pp 13–25

    Google Scholar 

  20. Reid L (1967) The pathology of emphysema. Lloyd-Luke, London, pp 319–361

    Google Scholar 

  21. Burri PH (1988) Development and regeneration of the lung. In: Jeffers JD, Navrozov M (eds) Pulmonary diseases and disorders, 2nd edn. McGraw-Hill, New York, pp 61–78

    Google Scholar 

  22. Jakkula M, Le Cras TD, Gebb S et al (2000) Inhibition of angiogenesis decreases alveolarization in the developing rat lung. Am J Physiol Lung Cell Mol Physiol 279:L600–L607

    PubMed  CAS  Google Scholar 

  23. Hansen-Smith FM (2000) Capillary network patterning during angiogenesis. Clin Exp Pharmacol Physiol 27:830–835

    PubMed  CAS  Google Scholar 

  24. Dor Y, Djonov V, Keshet E (2003) Making vascular networks in the adult: branching morphogenesis without a roadmap. Trends Cell Biol 13:131–136

    PubMed  CAS  Google Scholar 

  25. Metzger RJ, Klein OD, Martin GR, Krasnow MA (2008) The branching programme of mouse lung development. Nature 453:745–750

    PubMed  CAS  Google Scholar 

  26. Warburton D (2008) Developmental biology: order in the lung. Nature 453:733–735

    PubMed  CAS  Google Scholar 

  27. Elliott FM, Reid L (1965) Some new facts about the pulmonary artery and its branching pattern. Clin Radiol 16:193–198

    PubMed  CAS  Google Scholar 

  28. Shaw AM, Bunton DC, Fisher A et al (1999) V-shaped cushion at the origin of bovine pulmonary supernumerary arteries: structure and putative function. J Appl Physiol 87:2348–2356

    PubMed  CAS  Google Scholar 

  29. Bunton D, MacDonald A, Brown T, Tracey A, McGrath JC, Shaw AM (2000) 5-Hydroxytryptamine- and U46619-mediated vasoconstriction in bovine pulmonary conventional and supernumerary arteries: effect of endogenous nitric oxide. Clin Sci (Lond) 98:81–89

    CAS  Google Scholar 

  30. Weibel ER (1984) Airways and blood vessels. In: Crompton AW, Taylor CR (eds) The pathway for oxygen-structure and function in the mammalian respiratory system. Harvard University Press, Cambridge, pp 272–301

    Google Scholar 

  31. Staub NC, Schultz EL (1968) Pulmonary capillary length in dogs, cat and rabbit. Respir Physiol 5:371–378

    PubMed  CAS  Google Scholar 

  32. Caduff JH, Fischer LC, Burri PH (1986) Scanning electron microscope study of the developing microvasculature in the postnatal rat lung. Anat Rec 216:154–164

    PubMed  CAS  Google Scholar 

  33. Burri PH, Tarek MR (1990) A novel mechanism of capillary growth in the rat pulmonary microcirculation. Anat Rec 228:35–45

    PubMed  CAS  Google Scholar 

  34. Dunnill MS (1962) Postnatal growth of the lung. Thorax 17:329–333

    Google Scholar 

  35. Boyden EA (1977) Development of the lung. In: Hodson WA, Lenfant C (eds) Lung biology in health and disease. Dekker, New York, pp 3–35

    Google Scholar 

  36. Cooney TP, Thurlbeck WM (1982) The radial alveolar count method of Emery and Mithal: a reappraisal 1 – postnatal lung growth. Thorax 37:572–579

    PubMed  CAS  Google Scholar 

  37. Cooney TP, Thurlbeck WM (1982) The radial alveolar count method of Emery and Mithal: a reappraisal 2 – intrauterine and early postnatal lung growth. Thorax 37:580–583

    PubMed  CAS  Google Scholar 

  38. Gehr P, Bachofen M, Weibel ER (1978) The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir Physiol 32:121–140

    PubMed  CAS  Google Scholar 

  39. Weibel ER (1980) Design and structure of the human lung. In: Fishman A (ed) Pulmonary diseases. McGraw-Hill, New York, pp 224–271

    Google Scholar 

  40. Weibel E (1985) Lung cell biology. In: Fishman AP, Fisher A, Geiger S (eds) Handbook of physiology. American Physiological Society, Bethesda, pp 47–91

    Google Scholar 

  41. Weibel ER, Bachofen H (1979) Structural design of the alveolar septum and fluid exchange. In: Fishman AP, Renkin EM (eds) Pulmonary edema. American Physiological Society, Williams and Wilkins, Bethesda, pp 1–20

    Google Scholar 

  42. Jones R (1992) Ultrastructural analysis of contractile cell development in lung microvessels in hyperoxic pulmonary hypertension. Fibroblasts and intermediate cells selectively reorganize nonmuscular segments. Am J Pathol 141:1491–1505

    PubMed  CAS  Google Scholar 

  43. Langille BL (1993) Remodeling of developing and mature arteries: endothelium, smooth muscle, and matrix. J Cardiovasc Pharmacol 21:S11–S17

    PubMed  Google Scholar 

  44. Jones RC, Capen D, Petersen B, Jain RK, Duda DG (2008) A protocol for a lung neovascularization model in rodents. Nat Protoc 3:378–387

    PubMed  CAS  Google Scholar 

  45. Millard J (1965) Chronic lung disease. PhD thesis, London University

    Google Scholar 

  46. Zhao J, Bu D, Lee M, Slavkin HC, Hall FL, Warburton D (1996) Abrogation of transforming growth factor-β type II receptor stimulates embryonic mouse lung branching morphogenesis in culture. Dev Biol 180:242–257

    PubMed  CAS  Google Scholar 

  47. Warburton D, Zhao J, Berberich MA, Bernfield M (1999) Molecular embryology of the lung: then, now, and in the future. Am J Physiol 276:L697–L704

    PubMed  CAS  Google Scholar 

  48. Warburton D, Schwarz M, Tefft D, Flores-Delgado G, Anderson KD, Cardoso WV (2000) The molecular basis of lung morphogenesis. Mech Dev 92:55–81

    PubMed  CAS  Google Scholar 

  49. Warburton D, Bellusci S, Del Moral PM et al (2003) Growth factor signaling in lung morphogenetic centers: automaticity, stereotypy and symmetry. Respir Res 4:5

    PubMed  Google Scholar 

  50. Warburton D, Bellusci S, De Langhe S et al (2005) Molecular mechanisms of early lung specification and branching morphogenesis. Pediatr Res 57:26R–37R

    PubMed  Google Scholar 

  51. Warburton D, Lee MK (1999) Current concepts on lung development. Curr Opin Pediatr 11:188–192

    PubMed  CAS  Google Scholar 

  52. Cardoso WV (2001) Molecular regulation of lung development. Annu Rev Physiol 63:471–494

    PubMed  CAS  Google Scholar 

  53. Roth-Kleiner M, Post M (2003) Genetic control of lung development. Biol Neonate 84:83–88

    PubMed  Google Scholar 

  54. Cardoso WV, Lu J (2006) Regulation of early lung morphogenesis: questions, facts and controversies. Development 133:1611–1624

    PubMed  CAS  Google Scholar 

  55. Maeda Y, Dave V, Whitsett JA (2007) Transcriptional control of lung morphogenesis. Physiol Rev 87:219–244

    PubMed  CAS  Google Scholar 

  56. DiFiore JW, Wilson JM (1994) Lung development. Semin Pediatr Surg 3:221–232

    PubMed  CAS  Google Scholar 

  57. Taipale J, Keski-Oja J (1997) Growth factors in the extracellular matrix. FASEB J 11:51–59

    PubMed  CAS  Google Scholar 

  58. Risau W, Lemmon V (1988) Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Dev Biol 125:441–450

    PubMed  CAS  Google Scholar 

  59. Carey DJ (1991) Control of growth and differentiation of vascular cells by extracellular matrix proteins. Annu Rev Physiol 53:161–177

    PubMed  CAS  Google Scholar 

  60. McGowan SE (1992) Extracellular matrix and the regulation of lung development and repair. FASEB J 6:2895–2904

    PubMed  CAS  Google Scholar 

  61. Adams JC, Watt FM (1993) Regulation of development and differentiation by the extracellular matrix. Development 117:1183–1198

    PubMed  CAS  Google Scholar 

  62. Lin CQ, Bissell MJ (1993) Multi-faceted regulation of cell differentiation by extracellular matrix. FASEB J 7:737–743

    PubMed  CAS  Google Scholar 

  63. Sannes PL, Burch KK, Khosla J, McCarthy KJ, Couchman JR (1993) Immunohistochemical localization of chondroitin sulfate, chondroitin sulfate proteoglycan, heparan sulfate proteoglycan, entactin, and laminin in basement membranes of postnatal developing and adult rat lungs. Am J Respir Cell Mol Biol 8:245–251

    PubMed  CAS  Google Scholar 

  64. Land SC (2003) Oxygen-sensing pathways and the development of mammalian gas exchange. Redox Rep 8:325–340

    PubMed  CAS  Google Scholar 

  65. Stenmark KR, Abman SH (2005) Lung vascular development: implications for the pathogenesis of bronchopulmonary dysplasia. Annu Rev Physiol 67:623–661

    PubMed  CAS  Google Scholar 

  66. Dieperink HI, Blackwell TS, Prince LS (2006) Hyperoxia and apoptosis in developing mouse lung mesenchyme. Pediatr Res 59:185–190

    PubMed  CAS  Google Scholar 

  67. Gilbert SF (1994) Proximate tissue interactions – secondary induction (Ch. 18). In: Developmental biology, 4th edn. Sinauer Associates, Sunderland, pp 647–689

    Google Scholar 

  68. De Langhe SP, Carraro G, Warburton D, Hajihosseini MK, Bellusci S (2006) Levels of mesenchymal FGFR2 signaling modulate smooth muscle progenitor cell commitment in the lung. Dev Biol 299:52–62

    PubMed  Google Scholar 

  69. Perl AKT, Wert SE, Nagy A, Lobe CG, Whitsett JA (2002) Early restriction of peripheral and proximal cell lineages during formation of the lung. Proc Natl Acad Sci U S A 99:10482–10487

    PubMed  CAS  Google Scholar 

  70. Lebeche D, Malpel S, Cardoso WV (1999) Fibroblast growth factor interactions in the developing lung. Mech Dev 86:125–136

    PubMed  CAS  Google Scholar 

  71. Nehls V, Herrmann R, Huhnken M (1998) Guided migration as a novel mechanism of capillary network remodeling is regulated by basic fibroblast growth factor. Histochem Cell Biol 109:319–329

    PubMed  CAS  Google Scholar 

  72. Djonov V, Schmid M, Tschanz SA, Burri PH (2000) Intussusceptive angiogenesis: its role in embryonic vascular network formation. Circ Res 86:286–292

    PubMed  CAS  Google Scholar 

  73. Djonov VG, Kurz H, Burri PH (2002) Optimality in the developing vascular system: branching remodeling by means of intussusception as an efficient adaptation mechanism. Dev Dyn 224:391–402

    PubMed  Google Scholar 

  74. Kurz H, Burri PH, Djonov VG (2003) Angiogenesis and vascular remodeling by intussusception: from form to function. News Physiol Sci 18:65–70

    PubMed  Google Scholar 

  75. deMello DE, Sawyer D, Galvin N, Reid LM (1997) Early fetal development of lung vasculature. Am J Respir Cell Mol Biol 16:568–581

    PubMed  CAS  Google Scholar 

  76. Galambos C, DeMello DE (2007) Molecular mechanisms of pulmonary vascular development. Pediatr Dev Pathol 10:1–17

    PubMed  CAS  Google Scholar 

  77. Yao Y, Nowak S, Yochelis A, Garfinkel A, Bostrom KI (2007) Matrix GLA protein, an inhibitory morphogen in pulmonary vascular development. J Biol Chem 282:30131–30142

    PubMed  CAS  Google Scholar 

  78. Schachtner SK, Wang Y, Scott Baldwin H (2000) Qualitative and quantitative analysis of embryonic pulmonary vessel formation. Am J Respir Cell Mol Biol 22:157–165

    PubMed  CAS  Google Scholar 

  79. Parera MC, van Dooren M, van Kempen M et al (2005) Distal angiogenesis: a new concept for lung vascular morphogenesis. Am J Physiol Lung Cell Mol Physiol 288:L141–L149

    PubMed  CAS  Google Scholar 

  80. Anderson-Berry A, O’Brien EA, Bleyl SB et al (2005) Vasculogenesis drives pulmonary vascular growth in the developing chick embryo. Dev Dyn 233:145–153

    PubMed  CAS  Google Scholar 

  81. Gebb S, Stevens T (2004) On lung endothelial cell heterogeneity. Microvasc Res 68:1–12

    PubMed  CAS  Google Scholar 

  82. Kasper M (2005) Phenotypic characterization of pulmonary arteries in normal and diseased lung. Chest 128:547S–552S

    PubMed  Google Scholar 

  83. Stenmark KR, Gebb SA (2003) Lung vascular development: breathing new life into an old problem. Am J Respir Cell Mol Biol 28:133–137

    PubMed  CAS  Google Scholar 

  84. Ribatti D, Vacca A, Nico B, Roncali L, Dammacco F (2001) Postnatal vasculogenesis. Mech Dev 100:157–163

    PubMed  CAS  Google Scholar 

  85. Weiss DJ, Kolls JK, Ortiz LA, Panoskaltsis-Mortari A, Prockop DJ (2008) Stem cells and cell therapies in lung biology and lung diseases. Proc Am Thorac Soc 5:637–667

    PubMed  Google Scholar 

  86. (ATS) OWR (2004) Mechanisms and limits of induced postnatal lung growth. Am J Respir Crit Care Med 170:319–343

    Google Scholar 

  87. Balasubramaniam V, Mervis CF, Maxey AM, Markham NE, Abman SH (2007) Hyperoxia reduces bone marrow, circulating, and lung endothelial progenitor cells in the developing lung: implications for the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 292:L1073–L1084

    PubMed  CAS  Google Scholar 

  88. Jones RC, Capen DE, Jacobson M, Cohen KS, Scadden DT, Duda DG (2009) VEGFR2+PDGFRβ+ circulating precursor cells participate in capillary restoration after hyperoxia acute lung injury (HALI). J Cell Mol Med 13:3720–3729

    PubMed  Google Scholar 

  89. Peinado VI, Ramírez J, Roca J, Rodriguez-Roisin R, Barbera JA (2006) Identification of vascular progenitor cells in pulmonary arteries of patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 34:257–263

    PubMed  CAS  Google Scholar 

  90. Jones PL (2003) Homeobox genes in pulmonary vascular development and disease. Trends Cardiovasc Med 13:336–345

    PubMed  CAS  Google Scholar 

  91. Carmeliet P, Collen D (1997) Genetic analysis of blood vessel formation. Role of endothelial verses smooth muscle cells. Trends Cardiovasc Med 7:271–281

    PubMed  CAS  Google Scholar 

  92. Hanahan D (1997) Signaling vascular morphogenesis and maintenance. Science 277:48–50

    PubMed  CAS  Google Scholar 

  93. Yancopoulos GD, Klagsbrun M, Folkman J (1998) Vasculogenesis, angiogenesis, and growth factors: ephrins enter the fray at the border. Cell 93:661–664

    PubMed  CAS  Google Scholar 

  94. Wang HU, Chen ZF, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93:741–753

    PubMed  CAS  Google Scholar 

  95. Adams RH, Wilkinson GA, Weiss C et al (1999) Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13:295–306

    PubMed  CAS  Google Scholar 

  96. Gebb SA, Shannon JM (2000) Tissue interactions mediate early events in pulmonary vasculogenesis. Dev Dyn 217:159–169

    PubMed  CAS  Google Scholar 

  97. Greenberg JM, Thompson FY, Brooks SK et al (2002) Mesenchymal expression of vascular endothelial growth factors D and A defines vascular patterning in developing lung. Dev Dyn 224:144–153

    PubMed  CAS  Google Scholar 

  98. Healy AM, Morgenthau L, Zhu X, Farber HW, Cardoso WV (2000) VEGF is deposited in the subepithelial matrix at the leading edge of branching airways and stimulates neovascularization in the murine embryonic lung. Dev Dyn 219:341–352

    PubMed  CAS  Google Scholar 

  99. Breier G, Albrecht U, Sterrer S, Risau W (1992) Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 114:521–532

    PubMed  CAS  Google Scholar 

  100. Dumont DJ, Fong GH, Puri MC, Gradwohl G, Alitalo K, Breitman ML (1995) Vascularization of the mouse embryo: a study of flk-1, tek, tie, and vascular endothelial growth factor expression during development. Dev Dyn 203:80–92

    PubMed  CAS  Google Scholar 

  101. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13:9–22

    PubMed  CAS  Google Scholar 

  102. Millauer B, Wizigmann-Voos S, Schnurch H et al (1993) High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72:835–846

    PubMed  CAS  Google Scholar 

  103. Shalaby F, Rossant J, Yamaguchi TP et al (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66

    PubMed  CAS  Google Scholar 

  104. Gitay-Goren H, Cohen T, Tessler S et al (1996) Selective binding of VEGF121 to one of the three vascular endothelial growth factor receptors of vascular endothelial cells. J Biol Chem 271:5519–5523

    PubMed  CAS  Google Scholar 

  105. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M (1998) Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92:735–745

    PubMed  CAS  Google Scholar 

  106. Nishikawa SI, Nishikawa S, Hirashima M, Matsuyoshi N, Kodama H (1998) Progressive lineage analysis by cell sorting and culture identifies FLK1+VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development 125:1747–1757

    PubMed  CAS  Google Scholar 

  107. Yamamoto Y, Shiraishi I, Dai P, Hamaoka K, Takamatsu T (2007) Regulation of embryonic lung vascular development by vascular endothelial growth factor receptors, Flk-1 and Flt-1. Anat Rec (Hoboken) 290:958–973

    CAS  Google Scholar 

  108. Yamashita J, Itoh H, Hirashima M et al (2000) Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408:92–96

    PubMed  CAS  Google Scholar 

  109. Galambos C, Ng YS, Ali A et al (2002) Defective pulmonary development in the absence of heparin-binding vascular endothelial growth factor isoforms. Am J Respir Cell Mol Biol 27:194–203

    PubMed  CAS  Google Scholar 

  110. Zeng X, Wert SE, Federici R, Peters KG, Whitsett JA (1998) VEGF enhances pulmonary vasculogenesis and disrupts lung morphogenesis in vivo. Dev Dyn 211:215–227

    PubMed  CAS  Google Scholar 

  111. Tischer E, Gospodarowicz D, Mitchell R et al (1989) Vascular endothelial growth factor: a new member of the platelet-derived growth factor gene family. Biochem Biophys Res Commun 165:1198–1206

    PubMed  CAS  Google Scholar 

  112. Jakeman LB, Winer J, Bennett GL, Altar CA, Ferrara N (1992) Binding sites for vascular endothelial growth factor are localized on endothelial cells in adult rat tissues. J Clin Invest 89:244–253

    PubMed  CAS  Google Scholar 

  113. Lee S, Chen TT, Barber CL et al (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130:691–703

    PubMed  CAS  Google Scholar 

  114. van Tuyl M, Liu J, Wang J, Kuliszewski M, Tibboel D, Post M (2005) Role of oxygen and vascular development in epithelial branching morphogenesis of the developing mouse lung. Am J Physiol Lung Cell Mol Physiol 288:L167–L178

    PubMed  Google Scholar 

  115. Thomas PQ, Brown A, Beddington RS (1998) Hex: a homeobox gene revealing peri-implantation asymmetry in the mouse embryo and an early transient marker of endothelial cell precursors. Development 125:85–94

    PubMed  CAS  Google Scholar 

  116. Bogue CW, Gross I, Vasavada H, Dynia DW, Wilson CM, Jacobs HC (1994) Identification of Hox genes in newborn lung and effects of gestational age and retinoic acid on their expression. Am J Physiol 266:L448–L454

    PubMed  CAS  Google Scholar 

  117. Beck L Jr, D’Amore PA (1997) Vascular development: cellular and molecular regulation. FASEB J 11:365–373

    PubMed  CAS  Google Scholar 

  118. Davis GE, Camarillo CW (1996) An α2β1 integrin-dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix. Exp Cell Res 224:39–51

    PubMed  CAS  Google Scholar 

  119. Sato TN, Tozawa Y, Deutsch U et al (1995) Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376:70–74

    PubMed  CAS  Google Scholar 

  120. Suri C, Jones PF, Patan S et al (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180

    PubMed  CAS  Google Scholar 

  121. Koblizek TI, Weiss C, Yancopoulos GD, Deutsch U, Risau W (1998) Angiopoietin-1 induces sprouting angiogenesis in vitro. Curr Biol 8:529–532

    PubMed  CAS  Google Scholar 

  122. Gale NW, Yancopoulos GD (1999) Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes Dev 13:1055–1066

    PubMed  CAS  Google Scholar 

  123. Papapetropoulos A, Garcia-Cardena G, Dengler TJ, Maisonpierre PC, Yancopoulos GD, Sessa WC (1999) Direct actions of angiopoietin-1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Lab Invest 79:213–223

    PubMed  CAS  Google Scholar 

  124. Asahara T, Chen D, Takahashi T et al (1998) Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ Res 83:233–240

    PubMed  CAS  Google Scholar 

  125. Dickson MC, Martin JS, Cousins FM, Kulkarni AB, Karlsson S, Akhurst RJ (1995) Defective haematopoiesis and vasculogenesis in transforming growth factor-β1 knock out mice. Development 121:1845–1854

    PubMed  CAS  Google Scholar 

  126. Larsson J, Goumans MJ, Sjostrand LJ et al (2001) Abnormal angiogenesis but intact hematopoietic potential in TGF-β type I receptor-deficient mice. EMBO J 20:1663–1673

    PubMed  CAS  Google Scholar 

  127. Goumans MJ, Mummery C (2000) Functional analysis of the TGFβ receptor/Smad pathway through gene ablation in mice. Int J Dev Biol 44:253–265

    PubMed  CAS  Google Scholar 

  128. Itoh F, Itoh S, Carvalho RL et al (2009) Poor vessel formation in embryos from knock-in mice expressing ALK5 with L45 loop mutation defective in Smad activation. Lab Invest 89(7):800–810

    PubMed  CAS  Google Scholar 

  129. van den Driesche S, Mummery CL, Westermann CJ (2003) Hereditary hemorrhagic telangiectasia: an update on transforming growth factor β signaling in vasculogenesis and angiogenesis. Cardiovasc Res 58:20–31

    PubMed  Google Scholar 

  130. Shu W, Jiang YQ, Lu MM, Morrisey EE (2002) Wnt7b regulates mesenchymal proliferation and vascular development in the lung. Development 129:4831–4842

    PubMed  CAS  Google Scholar 

  131. Grier DG, Thompson A, Lappin TR, Halliday HL (2009) Quantification of Hox and surfactant protein-B transcription during murine lung development. Neonatology 96:50–60

    PubMed  CAS  Google Scholar 

  132. Schwarz M, Lee M, Zhang F et al (1999) EMAP II: a modulator of neovascularization in the developing lung. Am J Physiol 276:L365–L375

    PubMed  CAS  Google Scholar 

  133. Schwarz MA, Zhang F, Gebb S, Starnes V, Warburton D (2000) Endothelial monocyte activating polypeptide II inhibits lung neovascularization and airway epithelial morphogenesis. Mech Dev 95:123–132

    PubMed  CAS  Google Scholar 

  134. Schwarz MA, Caldwell L, Cafasso D, Zheng H (2009) Emerging pulmonary vasculature lacks fate specification. Am J Physiol Lung Cell Mol Physiol 296:L71–L81

    PubMed  CAS  Google Scholar 

  135. Taichman DB, Loomes KM, Schachtner SK et al (2002) Notch1 and Jagged1 expression by the developing pulmonary vasculature. Dev Dyn 225:166–175

    PubMed  CAS  Google Scholar 

  136. Alva JA, Iruela-Arispe ML (2004) Notch signaling in vascular morphogenesis. Curr Opin Hematol 11:278–283

    PubMed  CAS  Google Scholar 

  137. Kalinichenko VV, Gusarova GA, Kim IM et al (2004) Foxf1 haploinsufficiency reduces Notch-2 signaling during mouse lung development. Am J Physiol Lung Cell Mol Physiol 286:L521–L530

    PubMed  CAS  Google Scholar 

  138. Erber R, Eichelsbacher U, Powajbo V et al (2006) EphB4 controls blood vascular morphogenesis during postnatal angiogenesis. EMBO J 25:628–641

    PubMed  CAS  Google Scholar 

  139. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395

    PubMed  CAS  Google Scholar 

  140. Carmeliet P (2000) Developmental biology. One cell, two fates. Nature 408:43–45

    PubMed  CAS  Google Scholar 

  141. Le Lievre CS, Le Douarin NM (1975) Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. J Embryol Exp Morphol 34:125–154

    PubMed  Google Scholar 

  142. Mitchell JJ, Reynolds SE, Leslie KO, Low RB, Woodcock-Mitchell J (1990) Smooth muscle cell markers in developing rat lung. Am J Respir Cell Mol Biol 3:515–523

    PubMed  CAS  Google Scholar 

  143. Que J, Wilm B, Hasegawa H, Wang F, Bader D, Hogan BL (2008) Mesothelium contributes to vascular smooth muscle and mesenchyme during lung development. Proc Natl Acad Sci U S A 105:16626–16630

    PubMed  CAS  Google Scholar 

  144. Movat HZ, Fernando NV (1964) The fine structure of the terminal vascular bed. IV. The venules and their perivascular cells (pericytes, adventitial cells). Exp Mol Pathol 34:98–114

    PubMed  CAS  Google Scholar 

  145. Rhodin JA (1968) Ultrastructure of mammalian venous capillaries, venules, and small collecting veins. J Ultrastruct Res 25:452–500

    PubMed  CAS  Google Scholar 

  146. Sims DE (1986) The pericyte – a review. Tissue Cell 18:153–174

    PubMed  CAS  Google Scholar 

  147. Rhodin JA, Fujita H (1989) Capillary growth in the mesentery of normal young rats. Intravital video and electron microscope analyses. J Submicrosc Cytol Pathol 21:1–34

    PubMed  CAS  Google Scholar 

  148. Nehls V, Denzer K, Drenckhahn D (1992) Pericyte involvement in capillary sprouting during angiogenesis in situ. Cell Tissue Res 270:469–474

    PubMed  CAS  Google Scholar 

  149. Meyrick B, Reid L (1979) Ultrastructural features of the distended pulmonary arteries of the normal rat. Anat Rec 193:71–97

    PubMed  CAS  Google Scholar 

  150. Davies P, Burke G, Reid L (1986) The structure of the wall of the rat intraacinar pulmonary artery: an electron microscopic study of microdissected preparations. Microvasc Res 32:50–63

    PubMed  CAS  Google Scholar 

  151. Lindahl P, Karlsson L, Hellstrom M et al (1997) Alveogenesis failure in PDGF-A-deficient mice is coupled to lack of distal spreading of alveolar smooth muscle cell progenitors during lung development. Development 124:3943–3953

    PubMed  CAS  Google Scholar 

  152. Lindahl P, Hellstrom M, Kalen M, Betsholtz C (1998) Endothelial-perivascular cell signaling in vascular development: lessons from knockout mice. Curr Opin Lipidol 9:407–411

    PubMed  CAS  Google Scholar 

  153. Hall SM, Hislop AA, Pierce CM, Haworth SG (2000) Prenatal origins of human intrapulmonary arteries: formation and smooth muscle maturation. Am J Respir Cell Mol Biol 23:194–203

    PubMed  CAS  Google Scholar 

  154. Gittenberger-de Groot AC, Slomp J, DeRuiter MC, Poelmann RE (1995) Smooth muscle cell differentiation during early development and during intimal thickening formation in the ductus arteriosus. In: Schwartz SM, Mecham RP (eds) The vascular smooth muscle cell: molecular and biological responses to the extracellular matrix. Academic, San Diego, pp 17–36

    Google Scholar 

  155. DeRuiter MC, Poelmann RE, VanMunsteren JC, Mironov V, Markwald RR, Gittenberger-de Groot AC (1997) Embryonic endothelial cells transdifferentiate into mesenchymal cells expressing smooth muscle actins in vivo and in vitro. Circ Res 80:444–451

    PubMed  CAS  Google Scholar 

  156. Gittenberger-de Groot AC, DeRuiter MC, Bergwerff M, Poelmann RE (1999) Smooth muscle cell origin and its relation to heterogeneity in development and disease. Arterioscler Thromb Vasc Biol 19:1589–1594

    PubMed  CAS  Google Scholar 

  157. Kocher O, Skalli O, Cerutti D, Gabbiani F, Gabbiani G (1985) Cytoskeletal features of rat aortic cells during development. An electron microscopic, immunohistochemical, and biochemical study. Circ Res 56:829–838

    PubMed  CAS  Google Scholar 

  158. Allen KM, Haworth SG (1989) Cytoskeletal features of immature pulmonary vascular smooth muscle cells: the influence of pulmonary hypertension on normal development. J Pathol 158:311–317

    PubMed  CAS  Google Scholar 

  159. Borrione AC, Zanellato AM, Scannapieco G, Pauletto P, Sartore S (1989) Myosin heavy-chain isoforms in adult and developing rabbit vascular smooth muscle. Eur J Biochem 183:413–417

    PubMed  CAS  Google Scholar 

  160. Giuriato L, Scatena M, Chiavegato A et al (1992) Non-muscle myosin isoforms and cell heterogeneity in developing rabbit vascular smooth muscle. J Cell Sci 101:233–246

    PubMed  Google Scholar 

  161. Frid MG, Shekhonin BV, Koteliansky VE, Glukhova MA (1992) Phenotypic changes of human smooth muscle cells during development: late expression of heavy caldesmon and calponin. Dev Biol 153:185–193

    PubMed  CAS  Google Scholar 

  162. Frid MG, Printesva OY, Chiavegato A et al (1993) Myosin heavy-chain isoform composition and distribution in developing and adult human aortic smooth muscle. J Vasc Res 30:279–292

    PubMed  CAS  Google Scholar 

  163. Sartore S, Scatena M, Chiavegato A, Faggin E, Giuriato L, Pauletto P (1994) Myosin isoform expression in smooth muscle cells during physiological and pathological vascular remodeling. J Vasc Res 31:61–81

    PubMed  CAS  Google Scholar 

  164. Owens GK (1995) Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75:487–517

    PubMed  CAS  Google Scholar 

  165. Small JV, Furst DO, Thornell LE (1992) The cytoskeletal lattice of muscle cells. Eur J Biochem 208:559–572

    PubMed  CAS  Google Scholar 

  166. Small JV, North AJ (1995) Architecture of the smooth muscle cell. Academic, San Diego

    Google Scholar 

  167. Desmouliere A, Gabbiani G (1995) Smooth muscle cell and fibroblast biological and functional features: similarities and differences. In: Schwartz M, Mecham RP (eds) The vascular smooth muscle cell molecular and biological responses to the extracellular matrix. Academic, San Diego, pp 329–359

    Google Scholar 

  168. Weibel ER (1974) On pericytes, particularly their existence on lung capillaries. Microvasc Res 8:218–235

    PubMed  CAS  Google Scholar 

  169. Shepro D, Morel NM (1993) Pericyte physiology. FASEB J 7:1031–1038

    PubMed  CAS  Google Scholar 

  170. Skalli O, Pelte MF, Peclet MC et al (1989) Alpha-smooth muscle actin, a differentiation marker of smooth muscle cells, is present in microfilamentous bundles of pericytes. J Histochem Cytochem 37:315–321

    PubMed  CAS  Google Scholar 

  171. Nehls V, Drenckhahn D (1991) Heterogeneity of microvascular pericytes for smooth muscle type alpha-actin. J Cell Biol 113:147–154

    PubMed  CAS  Google Scholar 

  172. Kapanci Y, Ribaux C, Chaponnier C, Gabbiani G (1992) Cytoskeletal features of alveolar myofibroblasts and pericytes in normal human and rat lung. J Histochem Cytochem 40:1955–1963

    PubMed  CAS  Google Scholar 

  173. Crocker DJ, Murad TM, Geer JC (1970) Role of the pericyte in wound healing. An ultrastructural study. Exp Mol Pathol 13:51–65

    PubMed  CAS  Google Scholar 

  174. Jones R (1993) Role of interstitial fibroblasts and intermediate cells in microvascular wall remodeling in pulmonary hypertension. Eur Respir Rev 3:569–575

    Google Scholar 

  175. Jones R, Jacobson M, Steudel W (1999) α-Smooth-muscle actin and microvascular precursor smooth-muscle cells in pulmonary hypertension. Am J Respir Cell Mol Biol 20:582–594

    PubMed  CAS  Google Scholar 

  176. Jones R, Steudel W, White S, Jacobson M, Low R (1999) Microvessel precursor smooth muscle cells express head-inserted smooth muscle myosin heavy chain (SM-B) isoform in hyperoxic pulmonary hypertension. Cell Tissue Res 295:453–465

    PubMed  CAS  Google Scholar 

  177. Jones RC, Jacobson M (2000) Angiogenesis in the hypertensive lung: response to ambient oxygen tension. Cell Tissue Res 300:263–284

    PubMed  CAS  Google Scholar 

  178. Faury G (2001) Function-structure relationship of elastic arteries in evolution: from microfibrils to elastin and elastic fibres. Pathol Biol (Paris) 49:310–325

    CAS  Google Scholar 

  179. Noguchi A, Samaha H, deMello DE (1992) Tropoelastin gene expression in the rat pulmonary vasculature: a developmental study. Pediatr Res 31:280–285

    PubMed  CAS  Google Scholar 

  180. Jaques A, Serafini-Fracassini A (1985) Morphogenesis of the elastic fiber: an immunoelectronmicroscopy investigation. J Ultrastruct Res 92:201–210

    PubMed  CAS  Google Scholar 

  181. Rosenbloom J, Abrams WR, Mecham R (1993) Extracellular matrix 4: the elastic fiber. FASEB J 7:1208–1218

    PubMed  CAS  Google Scholar 

  182. Robb BW, Wachi H, Schaub T, Mecham RP, Davis EC (1999) Characterization of an in vitro model of elastic fiber assembly. Mol Biol Cell 10:3595–3605

    PubMed  CAS  Google Scholar 

  183. Hinek A, Wrenn DS, Mecham RP, Barondes SH (1988) The elastin receptor: a galactoside-binding protein. Science 239:1539–1541

    PubMed  CAS  Google Scholar 

  184. Mecham RP, Prosser I, Fukuda Y (1991) Elastic fibers. In: Crystal RG, West JB, Barnes PJ, Cherniack NS, Weibel ER (eds) The lung: scientific foundations. Raven, New York, pp 389–398

    Google Scholar 

  185. Crouch EC, Noguchi A, Mecham RP, Davila RM (1997) Collagens and elastic fiber proteins in lung development. Dekker, New York

    Google Scholar 

  186. Sakai LY, Keene DR, Engvall E (1986) Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J Cell Biol 103:2499–2509

    PubMed  CAS  Google Scholar 

  187. Mariencheck MC, Davis EC, Zhang H et al (1995) Fibrillin-1 and fibrillin-2 show temporal and tissue-specific regulation of expression in developing elastic tissues. Connect Tissue Res 31:87–97

    PubMed  CAS  Google Scholar 

  188. Zhang H, Hu W, Ramirez F (1995) Developmental expression of fibrillin genes suggests heterogeneity of extracellular microfibrils. J Cell Biol 129:1165–1176

    PubMed  CAS  Google Scholar 

  189. Brown-Augsburger P, Broekelmann T, Rosenbloom J, Mecham RP (1996) Functional domains on elastin and microfibril-associated glycoprotein involved in elastic fibre assembly. Biochem J 318:149–155

    PubMed  CAS  Google Scholar 

  190. Miosge N, Sasaki T, Timpl R (1999) Angiogenesis inhibitor endostatin is a distinct component of elastic fibers in vessel walls. FASEB J 13:1743–1750

    PubMed  CAS  Google Scholar 

  191. Hirschi KK, Rohovsky SA, D’Amore PA (1998) PDGF, TGF-β, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol 141:805–814

    PubMed  CAS  Google Scholar 

  192. Hirschi KK, Rohovsky SA, Beck LH, Smith SR, D’Amore PA (1999) Endothelial cells modulate the proliferation of mural cell precursors via platelet-derived growth factor-BB and heterotypic cell contact. Circ Res 84:298–305

    PubMed  CAS  Google Scholar 

  193. Leveen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C (1994) Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev 8:1875–1887

    PubMed  CAS  Google Scholar 

  194. Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C (1999) Role of PDGF-B and PDGFR-β in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126:3047–3055

    PubMed  CAS  Google Scholar 

  195. Jones R, Capen D, Jacobson M (2006) PDGF and microvessel wall remodeling in adult lung: imaging PDGF-Rβ and PDGF-BB molecules in progenitor smooth muscle cells developing in pulmonary hypertension. Ultrastruct Pathol 30:267–281

    PubMed  Google Scholar 

  196. Jones R, Capen D, Jacobson M, Munn L (2006) PDGF and microvessel wall remodeling in adult rat lung: imaging PDGF-AA and PDGF-Rα molecules in progenitor smooth muscle cells developing in experimental pulmonary hypertension. Cell Tissue Res 326:759–769

    PubMed  CAS  Google Scholar 

  197. Sjolund M, Rahm M, Claesson-Welsh L, Sejersen T, Heldin CH, Thyberg J (1990) Expression of PDGF α- and β-receptors in rat arterial smooth muscle cells is phenotype and growth state dependent. Growth Factors 3:191–203

    PubMed  CAS  Google Scholar 

  198. Holycross BJ, Blank RS, Thompson MM, Peach MJ, Owens GK (1992) Platelet-derived growth factor-BB-induced suppression of smooth muscle cell differentiation. Circ Res 71:1525–1532

    PubMed  CAS  Google Scholar 

  199. Benjamin LE, Hemo I, Keshet E (1998) A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125:1591–1598

    PubMed  CAS  Google Scholar 

  200. Reinmuth N, Liu W, Jung YD et al (2001) Induction of VEGF in perivascular cells defines a potential paracrine mechanism for endothelial cell survival. FASEB J 15:1239–1241

    PubMed  CAS  Google Scholar 

  201. Nystrom HC, Lindblom P, Wickman A et al (2006) Platelet-derived growth factor B retention is essential for development of normal structure and function of conduit vessels and capillaries. Cardiovasc Res 71:557–565

    PubMed  Google Scholar 

  202. Bergwerff M, Gittenberger-de Groot AC, DeRuiter MC, van Iperen L, Meijlink F, Poelmann RE (1998) Patterns of paired-related homeobox genes PRX1 and PRX2 suggest involvement in matrix modulation in the developing chick vascular system. Dev Dyn 213:59–70

    PubMed  CAS  Google Scholar 

  203. Burri PH (1984) Fetal and postnatal development of the lung. Annu Rev Physiol 46:617–628

    PubMed  CAS  Google Scholar 

  204. Prodhan P, Kinane TB (2002) Developmental paradigms in terminal lung development. Bioessays 24:1052–1059

    PubMed  CAS  Google Scholar 

  205. Amy RW, Bowes D, Burri PH, Haines J, Thurlbeck WM (1977) Postnatal growth of the mouse lung. J Anat 124:131–151

    PubMed  CAS  Google Scholar 

  206. Massaro D, Massaro GD (2002) Invited Review: pulmonary alveoli: formation, the “call for oxygen,” and other regulators. Am J Physiol Lung Cell Mol Physiol 282:L345–L358

    PubMed  CAS  Google Scholar 

  207. Schittny JC, Djonov V, Fine A, Burri PH (1998) Programmed cell death contributes to postnatal lung development. Am J Respir Cell Mol Biol 18:786–793

    PubMed  CAS  Google Scholar 

  208. Bruce MC, Honaker CE, Cross RJ (1999) Lung fibroblasts undergo apoptosis following alveolarization. Am J Respir Cell Mol Biol 20:228–236

    PubMed  CAS  Google Scholar 

  209. Bostrom H, Willetts K, Pekny M et al (1996) PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell 85:863–873

    PubMed  CAS  Google Scholar 

  210. Bostrom H, Gritli-Linde A, Betsholtz C (2002) PDGF-A/PDGF α-receptor signaling is required for lung growth and the formation of alveoli but not for early lung branching morphogenesis. Dev Dyn 223:155–162

    PubMed  CAS  Google Scholar 

  211. Starcher B, d’Azzo A, Keller PW, Rao GK, Nadarajah D, Hinek A (2008) Neuraminidase-1 is required for the normal assembly of ­elastic fibers. Am J Physiol Lung Cell Mol Physiol 295:L637–L647

    PubMed  CAS  Google Scholar 

  212. Anselmo MA, Dalvin S, Prodhan P et al (2003) Slit and robo: expression patterns in lung development. Gene Expr Patterns 3:13–19

    PubMed  CAS  Google Scholar 

  213. Greenberg JM, Thompson FY, Brooks SK, Shannon JM, Akeson AL (2004) Slit and robo expression in the developing mouse lung. Dev Dyn 230:350–360

    PubMed  CAS  Google Scholar 

  214. Randell SH, Mercer RR, Young SL (1989) Postnatal growth of pulmonary acini and alveoli in normal and oxygen-exposed rats studied by serial section reconstructions. Am J Anat 186:55–68

    PubMed  CAS  Google Scholar 

  215. Massaro D, Teich N, Maxwell S, Massaro GD, Whitney P (1985) Postnatal development of alveoli. Regulation and evidence for a critical period in rats. J Clin Invest 76:1297–1305

    PubMed  CAS  Google Scholar 

  216. Ong DE, Chytil F (1976) Changes in levels of cellular retinol- and retinoic-acid-binding proteins of liver and lung during perinatal development of rat. Proc Natl Acad Sci U S A 73:3976–3978

    PubMed  CAS  Google Scholar 

  217. Dirami G, Massaro GD, Clerch LB, Ryan US, Reczek PR, Massaro D (2004) Lung retinol storing cells synthesize and secrete retinoic acid, an inducer of alveolus formation. Am J Physiol Lung Cell Mol Physiol 286:L249–L256

    PubMed  CAS  Google Scholar 

  218. Reid L (1977) 1976 Edward B.D. Neuhauser lecture: the lung: growth and remodeling in health and disease. Am J Roentgenol 129:777–788

    CAS  Google Scholar 

  219. Semmens M (1970) The pulmonary artery in the normal aged lung. Br J Dis Chest 64:65–72

    PubMed  CAS  Google Scholar 

  220. Mackay EH, Banks J, Sykes B, Lee G (1978) Structural basis for the changing physical properties of human pulmonary vessels with age. Thorax 33:335–344

    PubMed  CAS  Google Scholar 

  221. Maeda S, Suzuki S, Suzuki T et al (2002) Analysis of intrapulmonary vessels and epithelial-endothelial interactions in the human developing lung. Lab Invest 82:293–301

    PubMed  Google Scholar 

  222. Hall SM, Hislop AA, Haworth SG (2002) Origin, differentiation, and maturation of human pulmonary veins. Am J Respir Cell Mol Biol 26:333–340

    PubMed  CAS  Google Scholar 

  223. deMello DE, Reid LM (2000) Embryonic and early fetal development of human lung vasculature and its functional implications. Pediatr Dev Pathol 3:439–449

    PubMed  CAS  Google Scholar 

  224. Bucher U, Reid L (1961) Development of the intrasegmental bronchial tree: the pattern of branching and development of cartilage at various stages of intra-uterine life. Thorax 16:207–218

    PubMed  CAS  Google Scholar 

  225. Potter EL, Loosli CG (1951) Prenatal development of the human lung. AMA Am J Dis Child 82:226–228

    PubMed  CAS  Google Scholar 

  226. Boyden EA, Tompsett DH (1965) The changing patterns in the developing lungs of infants. Acta Anat (Basel) 61:164–192

    CAS  Google Scholar 

  227. Hislop A, Reid L (1974) Development of the acinus in the human lung. Thorax 29:90–94

    PubMed  CAS  Google Scholar 

  228. Han RN, Post M, Tanswell AK, Lye SJ (2003) Insulin-like growth factor-I receptor-mediated vasculogenesis/angiogenesis in human lung development. Am J Respir Cell Mol Biol 28:159–169

    PubMed  CAS  Google Scholar 

  229. Frid MG, Moiseeva EP, Stenmark KR (1994) Multiple phenotypically distinct smooth muscle cell populations exist in the adult and developing bovine pulmonary arterial media in vivo. Circ Res 75:669–681

    PubMed  CAS  Google Scholar 

  230. Reid L (1979) Bronchopulmonary dysplasia – pathology. J Pediatr 95:836–841

    PubMed  CAS  Google Scholar 

  231. Hislop A, Reid LM (1974) Growth and development of the respiratory system: anatomical development. In: Davis JA, Dobbing J (eds) Scientific foundations of pediatrics. Heinemann, London, pp 214–254

    Google Scholar 

  232. Frey U, Hislop A, Silverman M (2004) Branching properties of the pulmonary arterial tree during pre- and postnatal development. Respir Physiol Neurobiol 139:179–189

    PubMed  Google Scholar 

  233. Singhal S, Henderson R, Horsfield K, Harding K, Cumming G (1973) Morphometry of the human pulmonary arterial tree. Circ Res 33:190–197

    PubMed  CAS  Google Scholar 

  234. Horsfield K, Gordon WI (1981) Morphometry of pulmonary veins in man. Lung 159:211–218

    PubMed  CAS  Google Scholar 

  235. Knudson RJ (1991) Physiology of the aging lung. In: Crystal RG, West JB, Barnes PJ, Cherniack NS, Weibel ER (eds) The lung: scientific foundations. Raven, New York, pp 1749–1759

    Google Scholar 

  236. Hopper JL, Hibbert ME, Macaskill GT, Phelan PD, Landau LI (1991) Longitudinal analysis of lung function growth in healthy children and adolescents. J Appl Physiol 70:770–777

    PubMed  CAS  Google Scholar 

  237. Green M, Mead J, Turner JM (1974) Variability of maximum expiratory flow-volume curves. J Appl Physiol 37:67–74

    PubMed  CAS  Google Scholar 

  238. Hibbert M, Lannigan A, Raven J, Landau L, Phelan P (1995) Gender differences in lung growth. Pediatr Pulmonol 19:129–134

    PubMed  CAS  Google Scholar 

  239. Albertine KH, Pysher TJ (2004) Pulmonary consequences of preterm birth. In: Harding R, Pinkerton KE, Plopper CG (eds) The lung: development, aging and the environment. Elsevier, London, pp 237–251

    Google Scholar 

  240. Harding R, Cock ML, Louey S et al (2000) The compromised intra-uterine environment: implications for future lung health. Clin Exp Pharmacol Physiol 27:965–974

    PubMed  CAS  Google Scholar 

  241. Harding R, Cock ML, Albuquerque CA (2004) Role of nutrition in lung development before and after birth. In: Harding R, Pinkerton KE, Plopper CG (eds) The lung: development, aging and the environment. Elsevier, London, pp 253–266

    Google Scholar 

  242. Ryland D, Reid L (1971) Pulmonary aplasia – a quantitative analysis of the development of the single lung. Thorax 26:602–609

    PubMed  CAS  Google Scholar 

  243. DiFiore JW, Fauza DO, Slavin R, Peters CA, Fackler JC, Wilson JM (1994) Experimental fetal tracheal ligation reverses the structural and physiological effects of pulmonary hypoplasia in congenital diaphragmatic hernia. J Pediatr Surg 29:248–256

    PubMed  CAS  Google Scholar 

  244. DiFiore JW, Fauza DO, Slavin R, Wilson JM (1995) Experimental fetal tracheal ligation and congenital diaphragmatic hernia: a pulmonary vascular morphometric analysis. J Pediatr Surg 30:917–923

    PubMed  CAS  Google Scholar 

  245. Geggel RL, Murphy JD, Langleben D, Crone RK, Vacanti JP, Reid LM (1985) Congenital diaphragmatic hernia: arterial structural changes and persistent pulmonary hypertension after surgical repair. J Pediatr 107:457–464

    PubMed  CAS  Google Scholar 

  246. Beals DA, Schloo BL, Vacanti JP, Reid LM, Wilson JM (1992) Pulmonary growth and remodeling in infants with high-risk congenital diaphragmatic hernia. J Pediatr Surg 27:997–1001

    PubMed  CAS  Google Scholar 

  247. Wohl ME, Griscom NT, Strieder DJ, Schuster SR, Treves S, Zwerdling RG (1977) The lung following repair of congenital diaphragmatic hernia. J Pediatr 90:405–414

    PubMed  CAS  Google Scholar 

  248. Jones R, Reid LM (2004) Development of the pulmonary vasculature. In: Harding R, Pinkerton KE, Plopper CG (eds) The lung: development, aging and the environment. Elsevier, London, pp 81–103

    Google Scholar 

  249. DeMello DE, Reid L (2002) Pre-and postnatal development of the pulmonary circulation. In: Haddad GG, Abman SH, Chernick V (eds) Basic mechanisms of pediatric disease, 2nd edn. Dekker, Hamilton, pp 77–101

    Google Scholar 

  250. Williams AJ, Vawter G, Reid LM (1984) Lung structure in asphyxiating thoracic dystrophy. Arch Pathol Lab Med 108:658–661

    PubMed  CAS  Google Scholar 

  251. Galambos C, Demello DE (2008) Regulation of alveologenesis: clinical implications of impaired growth. Pathology 40:124–140

    PubMed  Google Scholar 

  252. Thomas MA (1964) ‘Adult pattern’ of pulmonary vessels in newborn infants. Arch Dis Child 39:232–235

    PubMed  CAS  Google Scholar 

  253. Geggel RL, Reid LM (1984) The structural basis of PPHN. Clin Perinatol 11:525–549

    PubMed  CAS  Google Scholar 

  254. Burnell RH, Joseph MC, Lees MH (1972) Progressive pulmonary hypertension in newborn infants. A report of two cases with no identifiable respiratory or cardiac disease. Am J Dis Child 123:167–170

    PubMed  CAS  Google Scholar 

  255. Murphy JD, Rabinovitch M, Goldstein JD, Reid LM (1981) The structural basis of persistent pulmonary hypertension of the newborn infant. J Pediatr 98:962–967

    PubMed  CAS  Google Scholar 

  256. Murphy JD, Vawter GF, Reid LM (1984) Pulmonary vascular disease in fatal meconium aspiration. J Pediatr 104:758–762

    PubMed  CAS  Google Scholar 

  257. Haworth SG, Reid L (1976) Persistent fetal circulation: newly recognized structural features. J Pediatr 88:614–620

    PubMed  CAS  Google Scholar 

  258. Haworth SG, Reid L (1977) Structural study of pulmonary circulation and of heart in total anomalous pulmonary venous return in early infancy. Br Heart J 39:80–92

    PubMed  CAS  Google Scholar 

  259. Haworth SG, Reid L (1977) Quantitative structural study of pulmonary circulation in the newborn with pulmonary atresia. Thorax 32:129–133

    PubMed  CAS  Google Scholar 

  260. Haworth SG, Reid L (1977) Quantitative structural study of pulmonary circulation in the newborn with aortic atresia, stenosis, or coarctation. Thorax 32:121–128

    PubMed  CAS  Google Scholar 

  261. Hislop A, Hey E, Reid L (1979) The lungs in congenital bilateral renal agenesis and dysplasia. Arch Dis Child 54:32–38

    PubMed  CAS  Google Scholar 

  262. Goldstein JD, Reid LM (1980) Pulmonary hypoplasia resulting from phrenic nerve agenesis and diaphragmatic amyoplasia. J Pediatr 97:282–287

    PubMed  CAS  Google Scholar 

  263. Jobe AJ (1999) The new BPD: an arrest of lung development. Pediatr Res 46:641–643

    PubMed  CAS  Google Scholar 

  264. Jobe AH, Bancalari E (2001) Bronchopulmonary dysplasia. Am J Respir Crit Care Med 163:1723–1729

    PubMed  CAS  Google Scholar 

  265. Abman SH (2001) Bronchopulmonary dysplasia: “a vascular hypothesis”. Am J Respir Crit Care Med 164:1755–1756

    PubMed  CAS  Google Scholar 

  266. Abman SH (2008) The dysmorphic pulmonary circulation in bronchopulmonary dysplasia: a growing story. Am J Respir Crit Care Med 178:114–115

    PubMed  Google Scholar 

  267. Burrowes KS, Hunter PJ, Tawhai MH (2005) Anatomically based finite element models of the human pulmonary arterial and venous trees including supernumerary vessels. J Appl Physiol 99:731–738

    PubMed  Google Scholar 

  268. Tawhai MH, Burrowes KS, Hoffman EA (2006) Computational models of structure-function relationships in the pulmonary circulation and their validation. Exp Physiol 91:285–293

    PubMed  Google Scholar 

  269. Burrowes KS, Swan AJ, Warren NJ, Tawhai MH (2008) Towards a virtual lung: multi-scale, multi-physics modelling of the pulmonary system. Philos Transact A Math Phys Eng Sci 366:3247–3263

    PubMed  CAS  Google Scholar 

  270. Perl AKT, Whitsett JA (1999) Molecular mechanisms controlling lung morphogenesis. Clin Genet 56:14–27

    PubMed  CAS  Google Scholar 

  271. Reid L (1966) The embryology of the lung. In: de Reuck A, Porter R (eds) Development of the lung – CIBA Foundation symposium. Churchill, London, pp 109–124

    Google Scholar 

  272. Jones R, Zapol WM, Tomashefski JF Jr, Kirton OC, Kobayashi K, Reid LM (1985) Pulmonary vascular pathology – human and experimental studies. In: Zapol WM, Falke KJ (eds) Acute respiratory failure. Dekker, New York, pp 23–160

    Google Scholar 

  273. Weibel ER, Taylor CR (1988) Design and structure of the human lung. In: Jeffers JD, Navrozov M (eds) Pulmonary diseases and disorders, 2nd edn. McGraw-Hill, New York, pp 11–60

    Google Scholar 

  274. Ang SL, Rossant J (1994) HNF-3β is essential for node and notochord formation in mouse development. Cell 78:561–574

    PubMed  CAS  Google Scholar 

  275. Motoyama J, Liu J, Mo R, Ding Q, Post M, Hui CC (1998) Essential function of Gli2 and Gli3 in the formation of lung, trachea and oesophagus. Nat Genet 20:54–57

    PubMed  CAS  Google Scholar 

  276. Min H, Danilenko DM, Scully SA et al (1998) Fgf-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes Dev 12:3156–3161

    PubMed  CAS  Google Scholar 

  277. Kimura S, Hara Y, Pineau T et al (1996) The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 10:60–69

    PubMed  CAS  Google Scholar 

  278. Pepicelli CV, Lewis PM, McMahon AP (1998) Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr Biol 8:1083–1086

    PubMed  CAS  Google Scholar 

  279. Minoo P, Su G, Drum H, Bringas P, Kimura S (1999) Defects in tracheoesophageal and lung morphogenesis in Nkx2.1−/− mouse embryos. Dev Biol 209:60–71

    PubMed  CAS  Google Scholar 

  280. Peters KG, Werner S, Chen G, Williams LT (1992) Two FGF receptor genes are differentially expressed in epithelial and mesenchymal tissues during limb formation and organogenesis in the mouse. Development 114:233–243

    PubMed  CAS  Google Scholar 

  281. Sadler TW (1990) Embryonic period (third to eighth week). In: Gardner JN (ed) Langman’s medical embryology, 6th edn. Williams and Wilkins, Baltimore, pp 61–84

    Google Scholar 

  282. Schoefl GI (1964) Electron microscopic observations on the regeneration of blood vessels after injury. Ann N Y Acad Sci 116:789–802

    PubMed  CAS  Google Scholar 

  283. Ausprunk DH, Folkman J (1977) Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 14:53–65

    PubMed  CAS  Google Scholar 

  284. Sholley MM, Ferguson GP, Seibel HR, Montour JL, Wilson JD (1984) Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells. Lab Invest 51:624–634

    PubMed  CAS  Google Scholar 

  285. Kitagawa M, Hislop A, Boyden EA, Reid L (1971) Lung hypoplasia in congenital diaphragmatic hernia. A quantitative study of airway, artery, and alveolar development. Br J Surg 58:342–346

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The writting of this chapter by RJ and DC was supported by a grant from the National Institutes of Health (NIH HL 089252). The sterling work of the colleagues and investigators cited here is gratefully acknowledged. Section 2 dealing with regulation of the molecular basis of lung development is based on the author’s (RJ) presentation, and printed handout, for a symposium on genes and lung development, at a plenary session of an international meeting of the US/Canadian Society of Pediatric Pathology, held in 2004 in Vancouver, British Columbia, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosemary C. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jones, R.C., Capen, D.E. (2011). Pulmonary Vascular Development. In: Yuan, JJ., Garcia, J., West, J., Hales, C., Rich, S., Archer, S. (eds) Textbook of Pulmonary Vascular Disease. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-87429-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-87429-6_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-87428-9

  • Online ISBN: 978-0-387-87429-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics