Skip to main content

Microcirculation of the Lung: Functional and Anatomic Aspects

  • Chapter
  • First Online:

Abstract

The fixed pulmonary vascular anatomy differs from the systemic anatomy in the arrangement and shape of the capillary segments, but an even more striking peculiarity of the lung is that it needs to adapt itself to three different pressures, which leads to considerable adaptations and changes in morphology. Because of the pressure changes required by respiratory mechanics, the morphology differs both at the level of the capillaries and at the level of the extraalveolar small arteries and veins as a function of the existing mechanical conditions, adapting them in a way that is best suited to fulfill their respective functions. The configuration of the pulmonary capillary network markedly differs from that in the systemic capillary bed. The gas exchange needs are different in the systemic and in the pulmonary capillaries. In the periphery, the capillaries are longitudinal and their number and density in the tissue reflect local needs; in the lung, their purpose is to be capable of picking up from the outside as much oxygen as possible to fulfill the most extreme conceivable needs for gas exchange (the “diffusing capacity”). This capacity is normally not reached and the capillaries tolerate recruitment, de-recruitment, and changes in configuration that support variable quantitative ­levels of gas exchange.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gil J (1990) The normal pulmonary circulation. In: Fishman AP (ed) The pulmonary circulation, normal and abnormal. University of Pennsylvania Press, Philadelphia

    Google Scholar 

  2. Gil J (1978) Morphologic aspects of alveolar microcirculation. Fed Proc 37:2462–2465

    PubMed  CAS  Google Scholar 

  3. Gil J (1990) Controlled and reproducible fixation of the lung for correlated studies. In: Gil J (ed) Models of lung disease: methods in microscopy. Dekker, New York

    Google Scholar 

  4. Gil J, Bachofen H, Gehr P, Weibel ER (1979) Alveolar volume surface area relation in air and saline filled lungs fixed by vascular perfusion. J Appl Physiol 47:990–1001

    PubMed  CAS  Google Scholar 

  5. Gil J, Weibel ER (1972) Morphological study of pressure-volume hysteresis in rat lungs fixed by vascular perfusion. Respir Physiol 15:190–213

    Article  PubMed  CAS  Google Scholar 

  6. Gil J (1988) The normal lung circulation: state of the art. Chest 93:805–825

    Google Scholar 

  7. Weibel ER, Gil J (1977) Structure function relationships of the alveolar level. In: West JB (ed) Engineering aspects of lung. Dekker, New York

    Google Scholar 

  8. Lovering AT, Stickland MK, Eldridge MW (2006) Intrapulmonary shunt during normoxic and hypoxic exercise in healthy humans. Adv Exp Med Biol 588:31–45

    Article  PubMed  Google Scholar 

  9. Lamm WJ, Bernard SL, Wagner WW, Glenny RW (2005) Intravital microscopic observations of 15-micron microspheres lodging in the pulmonary circulation. J Appl Physiol 98:2242–2248

    Article  PubMed  Google Scholar 

  10. Fung YC, Sobin SS (1977) Pulmonary alveolar blood flow. In: West JB (ed) Bioengineering aspects of the lung. Dekker, New York, pp 267–359

    Google Scholar 

  11. Fung Y, Yen RT (1986) A new theory of pulmonary blood flow in zone 2 condition. J Appl Physiol 60:1638–1650

    PubMed  CAS  Google Scholar 

  12. Howell JBL, Permutt S, Proctor DF, Riley RL (1961) Effect of inflation of the lung on different parts of the pulmonary vascular bed. J Appl Physiol 16:71–76

    PubMed  CAS  Google Scholar 

  13. Sobin SS, Fung YC (1992) Response to challenge to the Sobin-Fung approach to the study of pulmonary microcirculation. Chest 101:1135–1143

    Article  PubMed  CAS  Google Scholar 

  14. Weibel ER (1963) Morphometry of the human lung. Springer, Berlin

    Google Scholar 

  15. Ciurea D, Gil J (1996) Morphometry of capillaries in three zones of rabbit lungs fixed by vascular perfusion. Anat Rec 244:182–192

    Article  PubMed  CAS  Google Scholar 

  16. Warwick R, Williams PL (eds) (1975) Gray’s anatomy, 35th edn. Longman, London

    Google Scholar 

  17. Gil J, McNiff JM (1981) Interstitial cells at the boundary between alveolar and extraalveolar connective tissue in the lung. J Ultrastr Res 76:149–157

    Article  CAS  Google Scholar 

  18. Lai-Fook JS (1993) Mechanical factors in lung liquid distribution. Annu Rev Physiol 55:155–179

    Article  PubMed  CAS  Google Scholar 

  19. Hislop A, Reid L (1973) Pulmonary arterial development during childhood: branching pattern and structure. Thorax 28:129–135

    Article  PubMed  CAS  Google Scholar 

  20. Waehrli P, Burri PH, Gil J, Weibel ER (2007) Ultrastructure and morphometry of the human lung. In: Shields TW (ed) General thoracic surgery. Lee and Febiger, Philadelphia

    Google Scholar 

  21. Ciurea D, Gil J (1989) Morphometric study of human alveolar ducts based on serial sections. J Appl Physiol 67:2512–2521

    PubMed  CAS  Google Scholar 

  22. Gil J, Ciurea D (2004) The functional structure of the pulmonary circulation. In: Peacock AJ, Rubin LJ (eds) Pulmonary circulation, diseases and their treatment, 2nd edn revised. Arnold, London

    Google Scholar 

  23. Guntheroth WG, Luchtel DL, Kawabori J (1992) Functional ­implications of the pulmonary microcirculation. An update. Chest 101:1131–1134

    Article  PubMed  CAS  Google Scholar 

  24. Bachofen H, Wagensteen D, Weibel ER (1982) Surfaces and ­volumes of alveolar tissue under zone II and zone II conditions. J Appl Physiol 53:879–885

    PubMed  CAS  Google Scholar 

  25. Koyama S, Hildebrandt J (1991) Air interface and elastic recoil affect vascular resistance in three zones of rabbit lungs. J Appl Physiol 70:2422–2431

    PubMed  CAS  Google Scholar 

  26. Lamm WJ, Obermiller T, Hlastala MP, Albert RK (1995) Perfusion through vessels open in zone 1 contributes to gas exchange in rabbit lungs in situ. J Appl Physiol 79:1895–1899

    PubMed  CAS  Google Scholar 

  27. Lamm WJ, Kirk KR, Hanson WL, Wagner WW Jr, Albert RK (1991) Flow through zone I lungs utilizes alveolar corner vessels. J Appl Physiol 70:1518–1523

    PubMed  CAS  Google Scholar 

  28. Conhaim RL, Rodenkirch LA (1998) Functional diameters of alveolar microvessels at high lung volume in zone II. J Appl Physiol 85:47–52

    PubMed  CAS  Google Scholar 

  29. Naeije R (2004) Pulmonary vascular function. In: Peacock AJ, Rubin LJ (eds) Pulmonary circulation. Arnold, London

    Google Scholar 

  30. Pellett AA, Johnson RW, Morrison GG, Champagne MS, DeBoisblanc BP, Levitzky MG (1999) A comparison of pulmonary arterial occlusion algorithms for estimation of pulmonary capillary pressure. Am J Respir Crit Care Med 160:162–168

    PubMed  CAS  Google Scholar 

  31. Ehrhart IC, Granger WM, Hofman WF (1986) Effect of arterial pressure on lung capillary pressure and edema after microembolism. J Appl Physiol 60:133–140

    PubMed  CAS  Google Scholar 

  32. Gaar KA Jr, Taylor AE, Owens LJ, Guyton AC (1967) Pulmonary capillary pressure and filtration coefficient in the isolated perfused lung. Am J Physiol 213:910–914

    PubMed  Google Scholar 

  33. Zhuang FY, Fung YC (1983) Yen RT analysis of blood flow in cat’s lung with detailed anatomic and elasticity data. J Appl Physiol 55:1341–1348

    PubMed  CAS  Google Scholar 

  34. Sobin SS, Fung YC, Tremer HM, Rosenquist TH (1972) Elasticity of the pulmonary alveolar microvascular sheet in the cat. Circ Res 30:440–450

    PubMed  CAS  Google Scholar 

Additional Reading

  1. West J, Dollery C, Naimark A (1964) Distribution of blood flow in isolated lungs; relation to vascular and alveolar pressures. J Appl Physiol 19:713–724

    PubMed  CAS  Google Scholar 

  2. Staub NC, Storey WF (1962) Relation between morphological and physiological events in lung studied by rapid freezing. J Appl Physiol 17:381–390

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Gil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gil, J. (2011). Microcirculation of the Lung: Functional and Anatomic Aspects. In: Yuan, JJ., Garcia, J., West, J., Hales, C., Rich, S., Archer, S. (eds) Textbook of Pulmonary Vascular Disease. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-87429-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-87429-6_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-87428-9

  • Online ISBN: 978-0-387-87429-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics