Skip to main content

Caveolae and Signaling in Pulmonary Vascular Endothelial and Smooth Muscle Cells

  • Chapter
  • First Online:
Book cover Textbook of Pulmonary Vascular Disease

Abstract

Caveolae exist in most cell types (with certain exceptions, e.g., erythrocytes, lymphocytes, and neurons) and are particularly abundant in endothelial cells (ECs) and smooth muscle cells (SMCs) of blood vessels. It is clear that the major plasmalemma vesicle structure in ECs and SMCs is caveolae as opposed to clathrin-coated vesicles. The number of caveolae is high in continuous endothelium (e.g., 73 caveolae per square micrometer in ECs of intramuscular capillaries) and low in fenestrated or discontinuous endothelium. Caveolae have a lipid composition similar to that of membrane rafts, but in addition, they possess other proteins, including the organelle-specific structural protein caveolin and the more recently identified cavin. Caveolae appear to represent a specialized form of membrane raft domain, where caveolin-1, glycosphingolipids, and cholesterol are preferentially concentrated. Instead of assembling these structures in the plasma membrane, cells may in fact build caveolae in the Golgi apparatus and then send them to the plasma membrane proper, where they are incorporated, a process involving Na/K-ATPase. This chapter describes the structure and function of caveolae and caveolin proteins and their interaction with membrane receptors, transporters and signaling proteins that are related to the pulmonary vascular permeability and pulmonary hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gabella G, Blundell D (1978) Effect of stretch and contraction on caveolae of smooth muscle cells. Cell Tissue Res 190:255–271

    Article  PubMed  CAS  Google Scholar 

  2. Stan RV (2002) Structure and function of endothelial caveolae. Microsc Res Tech 57:350–364

    Article  PubMed  Google Scholar 

  3. Gratton JP, Bernatchez P, Sessa WC (2004) Caveolae and caveolins in the cardiovascular system. Circ Res 94:1408–1417

    Article  PubMed  CAS  Google Scholar 

  4. Kurzchalia TV, Parton RG (1999) Membrane microdomains and caveolae. Curr Opin Cell Biol 11:424–431

    Article  PubMed  CAS  Google Scholar 

  5. Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RG (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682

    Article  PubMed  CAS  Google Scholar 

  6. Hill MM, Bastiani M, Luetterforst R et al (2008) PTRF-cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 132:113–124

    Article  PubMed  CAS  Google Scholar 

  7. Liu L, Brown D, McKee M et al (2008) Deletion of cavin/PTRF causes global loss of caveolae, dyslipidemia, and glucose intolerance. Cell Metab 8:310–317

    Article  PubMed  CAS  Google Scholar 

  8. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  PubMed  CAS  Google Scholar 

  9. Verkade P, Simons K (1997) Robert Feulgen lecture 1997. Lipid microdomains and membrane trafficking in mammalian cells. Histochem Cell Biol 108:211–220

    Article  PubMed  CAS  Google Scholar 

  10. Cai T, Wang H, Chen Y et al (2008) Regulation of caveolin-1 membrane trafficking by the Na/K-ATPase. J Cell Biol 182:1153–1169

    Article  PubMed  CAS  Google Scholar 

  11. Palade GE (1953) Fine structure of blood capillaries. J Appl Physiol 24:1424–1436

    Google Scholar 

  12. Yamada E (1955) The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol 1:445–458

    Article  PubMed  CAS  Google Scholar 

  13. Palade GE, Simionescu M, Simionescu N (1979) Structural aspects of the permeability of the microvascular endothelium. Acta Physiol Scand Suppl 463:11–32

    PubMed  CAS  Google Scholar 

  14. Simionescu M, Simionescu N (1984) Ultrastructure of the microvascular wall: functional correlations. In: Renkin EM, Michel CC (eds) Handbook of physiology: the cardiovascular system, microcirculation. American Physiological Society, Bethesda, pp 41–101

    Google Scholar 

  15. Oh P, Borgström P, Witkiewicz H et al (2007) Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung. Nat Biotechnol 25:327–337

    Article  PubMed  CAS  Google Scholar 

  16. Somlyo AV (1980) Ultrastructure of vascular smooth muscle. In: Bohr DF, Somlyo AP, Sparks HV Jr (eds) Handbook of physiology: the cardiovascular system, vascular smooth muscle. American Physiological Society, Bethesda, pp 33–67

    Google Scholar 

  17. Minshall RD, Malik AB (2006) Transport across the endothelium: regulation of endothelial permeability. Handb Exp Pharmacol 176:107–144

    Article  PubMed  Google Scholar 

  18. Pelkmans L, Helenius A (2002) Endocytosis via caveolae. Traffic 3:311–320

    Article  PubMed  CAS  Google Scholar 

  19. Pelkmans L, Bürli T, Zerial M, Helenius A (2004) Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell 118:767–780

    Article  PubMed  CAS  Google Scholar 

  20. Sprong H, van der Sluijs P, van Meer G (2001) How proteins move lipids and lipids move proteins. Nat Rev Mol Cell Biol 2:504–513

    Article  PubMed  CAS  Google Scholar 

  21. Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL (2003) Distinct endocytic pathways regulate TGF-β receptor signalling and turnover. Nat Cell Biol 5:410–421

    Article  PubMed  CAS  Google Scholar 

  22. Parkar NS, Akpa BS, Nitsche LC et al (2009) Vesicle formation and endocytosis: function, machinery, mechanisms, and modeling. Antioxid Redox Signal 11(6):1301–1312

    Google Scholar 

  23. Carver LA, Schnitzer JE (2003) Caveolae: mining little caves for new cancer targets. Nat Rev Cancer 3:571–581

    Article  PubMed  CAS  Google Scholar 

  24. Hayer A, Stoeber M, Ritz D, Engel S, Meyer HH, Helenius A. (2010) Caveolin-1 is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation. J Cell Biol 191(3):615–629

    Google Scholar 

  25. Drab M, Verkade P, Elger M et al (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293:2449–2452

    Article  PubMed  CAS  Google Scholar 

  26. Razani B, Engelman JA, Wang XB et al (2001) Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem 276:38121–38138

    Article  PubMed  CAS  Google Scholar 

  27. Maniatis NA, Shinin V, Schraufnagel DE et al (2008) Increased pulmonary vascular resistance and defective pulmonary artery filling in caveolin-1-/- mice. Am J Physiol Lung Cell Mol Physiol 294:L865–L873

    Article  PubMed  CAS  Google Scholar 

  28. Zhao YY, Liu Y, Stan RV et al (2002) Defects in caveolin-1 cause dilated cardiomyopathy and pulmonary hypertension in knockout mice. Proc Natl Acad Sci USA 99:11375–11380

    Article  PubMed  CAS  Google Scholar 

  29. Park DS, Woodman SE, Schubert W et al (2002) Caveolin-1/3 double-knockout mice are viable, but lack both muscle and non-muscle caveolae, and develop a severe cardiomyopathic phenotype. Am J Pathol 160:2207–2217

    Article  PubMed  CAS  Google Scholar 

  30. Gherghiceanu M, Hinescu ME, Popescu LM (2009) Myocardial interstitial Cajal-like cells (ICLC) in caveolin-1 KO mice. J Cell Mol Med 13:202–206

    Article  PubMed  CAS  Google Scholar 

  31. Vinten J, Voldstedlund M, Clausen H, Christiansen K, Carlsen J, Tranum-Jensen J (2001) A 60-kDa protein abundant in adipocyte caveolae. Cell Tissue Res 305:99–106

    Article  PubMed  CAS  Google Scholar 

  32. Aboulaich N, Vainonen JP, Strålfors P, Vener AV (2004) Vectorial proteomics reveal targeting, phosphorylation and specific fragmentation of polymerase I and transcript release factor (PTRF) at the surface of caveolae in human adipocytes. Biochem J 383:237–248

    Article  PubMed  CAS  Google Scholar 

  33. Vinten J, Johnsen AH, Roepstorff P, Harpøth J, Tranum-Jensen J (2005) Identification of a major protein on the cytosolic face of caveolae. Biochim Biophys Acta 1717:34–40

    Article  PubMed  CAS  Google Scholar 

  34. Razani B, Combs TP, Wang XB et al (2002) Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. J Biol Chem 277:8635–8647

    Article  PubMed  CAS  Google Scholar 

  35. van Deurs B, Roepstorff K, Hommelgaard AM, Sandvig K (2003) Caveolae: anchored, multifunctional platforms in the lipid ocean. Trends Cell Biol 13:92–100

    Article  PubMed  Google Scholar 

  36. Couet J, Belanger MM, Roussel E, Drolet MC (2001) Cell biology of caveolae and caveolin. Adv Drug Deliv Rev 49:223–235

    Article  PubMed  CAS  Google Scholar 

  37. Sverdlov M, Shajahan AN, Minshall RD (2007) Tyrosine phosphorylation-dependence of caveolae-mediated endocytosis. J Cell Mol Med 11:1239–1250

    Article  PubMed  CAS  Google Scholar 

  38. Kogo H, Ito SY, Moritoki Y, Kurahashi H, Fujimoto T (2006) Differential expression of caveolin-3 in mouse smooth muscle cells in vivo. Cell Tissue Res 324:291–300

    Article  PubMed  CAS  Google Scholar 

  39. Kogo H, Aiba T, Fujimoto T (2004) Cell type-specific occurrence of caveolin-1α and -1β in the lung caused by expression of distinct mRNAs. J Biol Chem 279:25574–25581

    Article  PubMed  CAS  Google Scholar 

  40. Fra AM, Williamson E, Simons K, Parton RG (1995) De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc Natl Acad Sci U S A 92:8655–8659

    Article  PubMed  CAS  Google Scholar 

  41. Fujimoto T, Kogo H, Nomura R, Une T (2000) Isoforms of caveolin-1 and caveolar structure. J Cell Sci 113:3509–3517

    PubMed  CAS  Google Scholar 

  42. Monier S, Parton RG, Vogel F, Behlke J, Henske A, Kurzchalia TV (1995) VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol Biol Cell 6:911–927

    PubMed  CAS  Google Scholar 

  43. Aoki T, Nomura R, Fujimoto T (1999) Tyrosine phosphorylation of caveolin-1 in the endothelium. Exp Cell Res 253:629–636

    Article  PubMed  CAS  Google Scholar 

  44. Aoki T, Hagiwara H, Matsuzaki T, Suzuki T, Takata K (2007) Internalization of caveolae and their relationship with endosomes in cultured human and mouse endothelial cells. Anat Sci Int 82:82–97

    Article  PubMed  CAS  Google Scholar 

  45. Machleidt T, Li WP, Liu P, Anderson RG (2000) Multiple domains in caveolin-1 control its intracellular traffic. J Cell Biol 148:17–28

    Article  PubMed  CAS  Google Scholar 

  46. Tang Z, Scherer PE, Okamoto T et al (1996) Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem 271:2255–2261

    Article  PubMed  CAS  Google Scholar 

  47. Banfi C, Brioschi M, Wait R et al (2006) Proteomic analysis of membrane microdomains derived from both failing and non-failing human hearts. Proteomics 6:1976–1988

    Article  PubMed  CAS  Google Scholar 

  48. Durr E, Yu J, Krasinska KM et al (2004) Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture. Nat Biotechnol 22:985–992

    Article  PubMed  CAS  Google Scholar 

  49. Foster LJ, De Hoog CL, Mann M (2003) Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc Natl Acad Sci USA 100:5813–5818

    Article  PubMed  CAS  Google Scholar 

  50. McMahon KA, Zhu M, Kwon SW, Liu P, Zhao Y, Anderson RG (2006) Detergent-free caveolae proteome suggests an interaction with ER and mitochondria. Proteomics 6:143–152

    Article  PubMed  CAS  Google Scholar 

  51. Sprenger RR, Horrevoets AJ (2007) The ins and outs of lipid domain proteomics. Proteomics 7:2895–2903

    Article  PubMed  CAS  Google Scholar 

  52. Couet J, Sargiacomo M, Lisanti MP (1997) Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J Biol Chem 272:30429–30438

    Article  PubMed  CAS  Google Scholar 

  53. Okamoto T, Schlegel A, Scherer PE, Lisanti MP (1998) Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem 273:5419–5422

    Article  PubMed  CAS  Google Scholar 

  54. Maniatis NA, Brovkovych V, Allen SE et al (2006) Novel mechanism of endothelial nitric oxide synthase activation mediated by caveolae internalization in endothelial cells. Circ Res 99:870–877

    Article  PubMed  CAS  Google Scholar 

  55. Galbiati F, Volonte D, Brown AM et al (2000) Caveolin-1 expression inhibits Wnt/β-catenin/Lef-1 signaling by recruiting β-catenin to caveolae membrane domains. J Biol Chem 275:23368–23377

    Article  PubMed  CAS  Google Scholar 

  56. Patel HH, Murray F, Insel PA (2008) Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annu Rev Pharmacol Toxicol 48:359–391

    Article  PubMed  CAS  Google Scholar 

  57. Lee H, Volonte D, Galbiati F et al (2000) Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol Endocrinol 14:1750–1775

    Article  PubMed  CAS  Google Scholar 

  58. Cao H, Courchesne WE, Mastick CC (2002) A phosphotyrosine-dependent protein interaction screen reveals a role for phosphorylation of caveolin-1 on tyrosine 14: recruitment of C-terminal Src kinase. J Biol Chem 277:8771–8774

    Article  PubMed  CAS  Google Scholar 

  59. Li S, Couet J, Lisanti MP (1996) Src tyrosine kinases, Gα subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem 271:29182–29190

    Article  PubMed  CAS  Google Scholar 

  60. Nomura R, Fujimoto T (1999) Tyrosine-phosphorylated caveolin-1: immunolocalization and molecular characterization. Mol Biol Cell 10:975–986

    PubMed  CAS  Google Scholar 

  61. Parton RG, Joggerst B, Simons K (1994) Regulated internalization of caveolae. J Cell Biol 127:1199–1215

    Article  PubMed  CAS  Google Scholar 

  62. Minshall RD, Tiruppathi C, Vogel SM, Malik AB (2002) Vesicle formation and trafficking in endothelial cells and regulation of endothelial barrier function. Histochem Cell Biol 117:105–112

    Article  PubMed  CAS  Google Scholar 

  63. Shajahan AN, Tiruppathi C, Smrcka AV, Malik AB, Minshall RD (2004) Gβγ activation of Src induces caveolae-mediated endocytosis in endothelial cells. J Biol Chem 279:48055–48062

    Article  PubMed  CAS  Google Scholar 

  64. Vepa S, Scribner WM, Natarajan V (1997) Activation of protein phosphorylation by oxidants in vascular endothelial cells: identification of tyrosine phosphorylation of caveolin. Free Radic Biol Med 22:25–35

    Article  PubMed  CAS  Google Scholar 

  65. Minshall RD, Tiruppathi C, Vogel SM et al (2000) Endothelial cell-surface gp60 activates vesicle formation and trafficking via Gi-coupled Src kinase signaling pathway. J Cell Biol 150:1057–1070

    Article  PubMed  CAS  Google Scholar 

  66. Chao WT, Fan SS, Chen JK, Yang VC (2003) Visualizing caveolin-1 and HDL in cholesterol-loaded aortic endothelial cells. J Lipid Res 44:1094–1099

    Article  PubMed  CAS  Google Scholar 

  67. Escriche M, Burgueño J, Ciruela F et al (2003) Ligand-induced caveolae-mediated internalization of A1 adenosine receptors: morphological evidence of endosomal sorting and receptor recycling. Exp Cell Res 285:72–90

    Article  PubMed  CAS  Google Scholar 

  68. Huo H, Guo X, Hong S, Jiang M, Liu X, Liao K (2003) Lipid rafts/caveolae are essential for insulin-like growth factor-1 receptor signaling during 3T3-L1 preadipocyte differentiation induction. J Biol Chem 278:11561–11569

    Article  PubMed  CAS  Google Scholar 

  69. Podar K, Tai YT, Cole CE et al (2003) Essential role of caveolae in interleukin-6- and insulin-like growth factor I-triggered Akt-1-mediated survival of multiple myeloma cells. J Biol Chem 278:5794–5801

    Article  PubMed  CAS  Google Scholar 

  70. Mettouchi A, Klein S, Guo W et al (2001) Integrin-specific activation of Rac controls progression through the G1 phase of the cell cycle. Mol Cell 8:115–127

    Article  PubMed  CAS  Google Scholar 

  71. Hill MM, Scherbakov N, Schiefermeier N et al (2007) Reassessing the role of phosphocaveolin-1 in cell adhesion and migration. Traffic 8:1695–1705

    Article  PubMed  CAS  Google Scholar 

  72. Hu G, Place AT, Minshall RD (2008) Regulation of endothelial permeability by Src kinase signaling: vascular leakage versus transcellular transport of drugs and macromolecules. Chem Biol Interact 171:177–189

    Article  PubMed  CAS  Google Scholar 

  73. Lee H, Woodman SE, Engelman JA et al (2001) Palmitoylation of caveolin-1 at a single site (Cys-156) controls its coupling to the c-Src tyrosine kinase: targeting of dually acylated molecules (GPI-linked, transmembrane, or cytoplasmic) to caveolae effectively uncouples c-Src and caveolin-1 (TYR-14). J Biol Chem 276:35150–35158

    Article  PubMed  CAS  Google Scholar 

  74. Tiruppathi C, Song W, Bergenfeldt M, Sass P, Malik AB (1997) Gp60 activation mediates albumin transcytosis in endothelial cells by tyrosine kinase-dependent pathway. J Biol Chem 272:25968–25975

    Article  PubMed  CAS  Google Scholar 

  75. Del Pozo MA, Schwartz MA (2007) Rac, membrane heterogeneity, caveolin and regulation of growth by integrins. Trends Cell Biol 17:246–250

    Article  PubMed  CAS  Google Scholar 

  76. Wary KK, Mariotti A, Zurzolo C, Giancotti FG (1998) A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell 94:625–634

    Article  PubMed  CAS  Google Scholar 

  77. Fujimoto T, Nakade S, Miyawaki A, Mikoshiba K, Ogawa K et al (1992) Localization of inositol 1,4,5-trisphosphate receptor-like protein in plasmalemmal caveolae. J Cell Biol 119:1507–1513

    Article  PubMed  Google Scholar 

  78. Jorgensen AO, Shen AC, Arnold W, Leung AT (1989) Campbell KP Subcellular distribution of the 1,4-dihydropyridine receptor in rabbit skeletal muscle in situ: an immunofluorescence and immunocolloidal gold-labeling study. J Cell Biol 109:135–147

    Article  PubMed  CAS  Google Scholar 

  79. Lockwich TP, Liu X, Singh BB, Jadlowiec J, Weiland S, Ambudkar IS (2000) Assembly of Trp1 in a signaling complex associated with caveolin-scaffolding lipid raft domains. J Biol Chem 275:11934–11942

    Article  PubMed  CAS  Google Scholar 

  80. Saliez J, Bouzin C, Rath G et al (2008) Role of caveolar compartmentation in endothelium-derived hyperpolarizing factor-mediated relaxation: Ca2+ signals and gap junction function are regulated by caveolin in endothelial cells. Circulation 117:1065–1074

    Article  PubMed  CAS  Google Scholar 

  81. Sugi H, Suzuki S, Daimon T (1982) Intracellular calcium translocation during contraction in vertebrate and invertebrate smooth muscles as studied by the pyroantimonate method. Can J Physiol Pharmacol 60:576–587

    PubMed  CAS  Google Scholar 

  82. Isshiki M, Ying YS, Fujita T, Anderson RG (2002) A molecular sensor detects signal transduction from caveolae in living cells. J Biol Chem 277:43389–43398

    Article  PubMed  CAS  Google Scholar 

  83. Tiruppathi C, Ahmmed GU, Vogel SM, Malik AB (2006) Ca2+ signaling, TRP channels, and endothelial permeability. Microcirculation 13:693–708

    Article  PubMed  CAS  Google Scholar 

  84. Patel HH, Zhang S, Murray F et al (2007) Increased smooth muscle cell expression of caveolin-1 and caveolae contribute to the pathophysiology of idiopathic pulmonary arterial hypertension. FASEB J 21:2970–2979

    Article  PubMed  Google Scholar 

  85. Murata T, Lin MI, Stan RV, Bauer PM, Yu J, Sessa WC (2007) Genetic evidence supporting caveolae microdomain regulation of calcium entry in endothelial cells. J Biol Chem 282:16631–16643

    Article  PubMed  CAS  Google Scholar 

  86. Bair AM, Thippegowda PB, Freichel M et al (2009) Ca2+ entry via TRPC channels is necessary for thrombin-induced NF-κB activation in endothelial cells through AMP-activated protein kinase and protein kinase Cδ. J Biol Chem 284:563–574

    Article  PubMed  CAS  Google Scholar 

  87. Kwiatek AM, Minshall RD, Cool DR, Skidgel RA, Malik AB, Tiruppathi C et al (2006) Caveolin-1 regulates store-operated Ca2+ influx by binding of its scaffolding domain to transient receptor potential channel-1 in endothelial cells. Mol Pharmacol 70:1174–1183

    Article  PubMed  CAS  Google Scholar 

  88. Sundivakkam PC, Kwiatek AM, Sharma TT, Minshall RD, Malik AB, Tiruppathi C (2009) Caveolin-1 scaffold domain interacts with TRPC1 and IP3R3 to regulate Ca2+ store release-induced Ca2+ entry in endothelial cells. Am J Physiol Cell Physiol 296:C403–C413

    Article  PubMed  CAS  Google Scholar 

  89. Shaul PW, Smart EJ, Robinson LJ et al (1996) Acylation targets emdothelial nitric-oxide synthase to plasmalemmal caveolae. J Biol Chem 271:6518–6522

    Article  PubMed  CAS  Google Scholar 

  90. García-Cardeña G, Oh P, Liu J, Schnitzer JE, Sessa WC (1996) Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling. Proc Natl Acad Sci USA 93:6448–6453

    Article  PubMed  Google Scholar 

  91. McDonald KK, Zharikov S, Block ER, Kilberg MS (1997) A caveolar complex between the cationic amino acid transporter 1 and endothelial nitric-oxide synthase may explain the “arginine paradox”. J Biol Chem 272:31213–31216

    Article  PubMed  CAS  Google Scholar 

  92. Gratton JP, Fontana J, O’Connor DS, Garcia-Cardena G, McCabe TJ, Sessa WC et al (2000) Reconstitution of an endothelial nitric-oxide synthase (eNOS), hsp90, and caveolin-1 complex in vitro. Evidence that hsp90 facilitates calmodulin stimulated displacement of eNOS from caveolin-1. J Biol Chem 275:22268–22272

    Article  PubMed  CAS  Google Scholar 

  93. Ju H, Venema VJ, Liang H, Harris MB, Zou R, Venema RC (2000) Bradykinin activates the Janus-activated kinase/signal transducers and activators of transcription (JAK/STAT) pathway in vascular endothelial cells: localization of JAK/STAT signalling proteins in plasmalemmal caveolae. Biochem J 351:257–264

    Article  PubMed  CAS  Google Scholar 

  94. Labrecque L, Royal I, Surprenant DS, Patterson C, Gingras D, Béliveau R (2003) Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Mol Biol Cell 14:334–347

    Article  PubMed  CAS  Google Scholar 

  95. Linder AE, McCluskey LP, Cole KR 3rd, Lanning KM, Webb RC (2005) Dynamic association of nitric oxide downstream signaling molecules with endothelial caveolin-1 in rat aorta. J Pharmacol Exp Ther 314:9–15

    Article  PubMed  CAS  Google Scholar 

  96. Fulton D, Gratton JP, Sessa WC (2001) Post-translational control of endothelial nitric oxide synthase: why isn’t calcium/calmodulin enough? J Pharmacol Exp Ther 299:818–824

    PubMed  CAS  Google Scholar 

  97. Feron O, Saldana F, Michel JB, Michel T (1998) The endothelial nitric-oxide synthase-caveolin regulatory cycle. J Biol Chem 273:3125–3128

    Article  PubMed  CAS  Google Scholar 

  98. Sánchez FA, Kim DD, Durán RG, Meininger CJ, Durán WN (2008) Internalization of eNOS via caveolae regulates PAF-induced inflammatory hyperpermeability to macromolecules. Am J Physiol Heart Circ Physiol 295:H1642–H1648

    Article  PubMed  CAS  Google Scholar 

  99. Bucci M, Gratton JP, Rudic RD et al (2000) In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nat Med 6:1362–1367

    Article  PubMed  CAS  Google Scholar 

  100. Tourkina E, Richard M, Gööz P et al (2008) Antifibrotic properties of caveolin-1 scaffolding domain in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol 294:L843–L861

    Article  PubMed  CAS  Google Scholar 

  101. Hardin CD, Vallejo J (2006) Caveolins in vascular smooth muscle: form organizing function. Cardiovasc Res 69:808–815

    Article  PubMed  CAS  Google Scholar 

  102. Glenney JR Jr (1989) Tyrosine phosphorylation of a 22-kDa protein is correlated with transformation by Rous sarcoma virus. J Biol Chem 264:20163–20166

    PubMed  CAS  Google Scholar 

  103. Shajahan AN, Timblin BK, Sandoval R, Tiruppathi C, Malik AB, Minshall RD et al (2004) Role of Src-induced dynamin-2 phosphorylation in caveolae-mediated endocytosis in endothelial cells. J Biol Chem 279:20392–20400

    Article  PubMed  CAS  Google Scholar 

  104. John TA, Vogel SM, Tiruppathi C, Makik AB, Minshall RD (2003) Quantitative analysis of albumin uptake and transport in the rat microvessel endothelial monolayer. Am J Physiol Lung Cell Mol Physiol 284:L187–L196

    PubMed  CAS  Google Scholar 

  105. Schnitzer JE, Oh P, Pinney E, Allard J (1994) Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J Cell Biol 127:1217–1232

    Article  PubMed  CAS  Google Scholar 

  106. Minshall RD, Sessa WC, Stan RV, Anderson RG, Malik AB (2003) Caveolin regulation of endothelial function. Am J Physiol Lung Cell Mol Physiol 285:L1179–L1183

    PubMed  CAS  Google Scholar 

  107. Lajoie P, Nabi IR (2007) Regulation of raft-dependent endocytosis. J Cell Mol Med 11:644–653

    Article  PubMed  CAS  Google Scholar 

  108. Kirkham M, Fujita A, Chadda R et al (2005) Ultrastructural ­identification of uncoated caveolin-independent early endocytic vehicles. J Cell Biol 168:465–476

    Article  PubMed  CAS  Google Scholar 

  109. Miyawaki-Shimizu K, Predescu D, Shimizu J, Broman M, Predescu S, Malik AB et al (2006) siRNA-induced caveolin-1 knockdown in mice increases lung vascular permeability via the junctional pathway. Am J Physiol Lung Cell Mol Physiol 290:L405–L413

    Article  PubMed  CAS  Google Scholar 

  110. Schubert W, Frank PG, Woodman SE et al (2002) Microvascular hyperpermeability in caveolin-1-/- knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-NAME, restores normal microvascular permeability in Cav-1 null mice. J Biol Chem 277:40091–40098

    Article  PubMed  CAS  Google Scholar 

  111. Dewever J, Frérart F, Bouzin C et al (2007) Caveolin-1 is critical for the maturation of tumor blood vessels through the regulation of both endothelial tube formation and mural cell recruitment. Am J Pathol 171:1619–1628

    Article  PubMed  CAS  Google Scholar 

  112. Carlile-Klusacek M, Rizzo V (2007) Endothelial cytoskeletal reorganization in response to PAR1 stimulation is mediated by membrane rafts but not caveolae. Am J Physiol Heart Circ Physiol 293:H366–H375

    Article  PubMed  CAS  Google Scholar 

  113. Predescu SA, Predescu DN, Timblin BK, Stan RV, Malik AB (2003) Intersectin regulates fission and internalization of caveolae in endothelial cells. Mol Biol Cell 14:4997–5010

    Article  PubMed  CAS  Google Scholar 

  114. Heldin CH, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79:1283–1316

    PubMed  CAS  Google Scholar 

  115. Galbiati F, Volonte D, Engelman JA et al (1998) Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. EMBO J 17:6633–6648

    Article  PubMed  CAS  Google Scholar 

  116. Lin MI, Yu J, Murata T, Sessa WC (2007) Caveolin-1-deficient mice have increased tumor microvascular permeability, angiogenesis, and growth. Cancer Res 67:2849–2856

    Article  PubMed  CAS  Google Scholar 

  117. Zhong Y, Smart EJ, Weksler B, Couraud P-O, Hennig B, Toborek M (2008) Caveolin-1 regulates human immunodeficiency virus-1 Tat-induced alterations of tight junction protein expression via modulation of the Ras signaling. J Neurosci 28:7788–7796

    Article  PubMed  CAS  Google Scholar 

  118. Song L, Ge S, Pachter JS (2007) Caveolin-1 regulates expression of junction-associated proteins in brain microvascular endothelial cells. Blood 109:1515–1523

    Article  PubMed  CAS  Google Scholar 

  119. Pike LJ (2004) Lipid rafts: heterogeneity on the high seas. Biochem J 378:281–292

    Article  PubMed  CAS  Google Scholar 

  120. Birukov KG (2009) Small GTPases in mechanosensitive regulation of endothelial barrier. Microvasc Res 77:46–52

    Article  PubMed  CAS  Google Scholar 

  121. Albinsson S, Nordström I, Swärd K, Hellstrand P (2008) Differential dependence of stretch and shear stress signaling on caveolin-1 in the vascular wall. Am J Physiol Cell Physiol 294:C271–C279

    Article  PubMed  CAS  Google Scholar 

  122. Peng F, Wu D, Ingram AJ, Gao B, Krepinsky JC (2007) RhoA activation in mesangial cells by mechanical strain depends on caveolae and caveolin-1 interaction. J Am Soc Nephrol 18:189–198

    Article  PubMed  CAS  Google Scholar 

  123. Kawamura S, Miyamoto S, Brown JH (2003) Initiation and transduction of stretch-induced RhoA and Rac1 activation through caveolae: cytoskeletal regulation of ERK translocation. J Biol Chem 278:31111–31117

    Article  PubMed  CAS  Google Scholar 

  124. Rizzo V, McIntosh DP, Oh P, Schnitzer JE (1998) In situ flow activates endothelial nitric oxide synthase in luminal caveolae of endothelium with rapid caveolin dissociation and calmodulin association. J Biol Chem 273:34724–34729

    Article  PubMed  CAS  Google Scholar 

  125. Yu J, Bergaya S, Murata T et al (2006) Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. J Clin Invest 116:1284–1291

    Article  PubMed  CAS  Google Scholar 

  126. Frank PG, Lee H, Park DS, Tandon NN, Scherer PE, Lisanti MP (2004) Genetic ablation of caveolin-1 confers protection against atherosclerosis. Arterioscler Thromb Vasc Biol 24:98–105

    Article  PubMed  CAS  Google Scholar 

  127. Ju H, Zou R, Venema VJ, Venema RC (1997) Direct interaction of endothelial nitric-oxide synthase and caveolin-1 inhibits synthase activity. J Biol Chem 272:18522–18525

    Article  PubMed  CAS  Google Scholar 

  128. García-Cardeña G, Martasek P, Masters BS et al (1997) Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the NOS caveolin binding domain in vivo. J Biol Chem 272:25437–25440

    Article  PubMed  Google Scholar 

  129. Frank PG, Pavlides S, Cheung MW, Daumer K, Lisanti MP (2008) Role of caveolin-1 in the regulation of lipoprotein metabolism. Am J Physiol Cell Physiol 295:C242–C248

    Article  PubMed  CAS  Google Scholar 

  130. Schach C, Firth AL, Xu M et al (2008) Regulation of pulmonary vasoconstriction by agonists and caveolae. Exp Lung Res 34:195–208

    Article  PubMed  CAS  Google Scholar 

  131. Mathew R, Huang J, Gewitz MH (2007) Pulmonary artery hypertension: caveolin-1 and eNOS interrelationship: a new perspective. Cardiol Rev 15:143–149

    Article  PubMed  Google Scholar 

  132. Thyberg J, Roy J, Tran PK, Blomgren K, Dumitrescu A, Hedin U (1997) Expression of caveolae on the surface of rat arterial smooth muscle cells is dependent on the phenotypic state of the cells. Lab Invest 77:93–101

    PubMed  CAS  Google Scholar 

  133. Raines EW, Ross R (1996) Multiple growth factors are associated with lesions of atherosclerosis: specificity or redundancy? Bioessays 18:271–282

    Article  PubMed  CAS  Google Scholar 

  134. Peterson TE, Guicciardi ME, Gulati R et al (2003) Caveolin-1 can regulate vascular smooth muscle cell fate by switching platelet-derived growth factor signaling from a proliferative to an apoptotic pathway. Arterioscler Thromb Vasc Biol 23:1521–1527

    Article  PubMed  CAS  Google Scholar 

  135. Thyberg J (2003) Caveolin-1 and caveolae act as regulators of mitogenic signaling in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 23:1481–1483

    Article  PubMed  CAS  Google Scholar 

  136. Zeidan A, Broman J, Hellstrand P, Swärd K (2003) Cholesterol dependence of vascular ERK1/2 activation and growth in response to stretch: role of endothelin-1. Arterioscler Thromb Vasc Biol 23:1528–1534

    Article  PubMed  CAS  Google Scholar 

  137. Aboumousa A, Hoogendijk J, Charlton R et al (2008) Caveolinopathy – new mutations and additional symptoms. Neuromuscul Disord 18:572–578

    Article  PubMed  Google Scholar 

  138. McIntosh DP, Tan XY, Oh P, Schnitzer JE (2002) Targeting endothelium and its dynamic caveolae for tissue-specific transcytosis in vivo: a pathway to overcome cell barriers to drug and gene delivery. Proc Natl Acad Sci USA 99:1996–2001

    Article  PubMed  CAS  Google Scholar 

  139. Fielding CJ, Fielding PE (2000) Cholesterol and caveolae: structural and functional relationships. Biochim Biophys Acta 1529:210–222

    PubMed  CAS  Google Scholar 

  140. Goetz JG, Lajoie P, Wiseman SM, Nabi IR (2008) Caveolin-1 in tumor progression: the good, the bad and the ugly. Cancer Metastasis Rev 27:715–735

    Article  PubMed  CAS  Google Scholar 

  141. Shatz M, Liscovitch M (2008) Caveolin-1: a tumor-promoting role in human cancer. Int J Radiat Biol 84:177–189

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geerten P. van Nieuw Amerongen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

van Nieuw Amerongen, G.P., Minshall, R.D., Malik, A.B. (2011). Caveolae and Signaling in Pulmonary Vascular Endothelial and Smooth Muscle Cells. In: Yuan, JJ., Garcia, J., West, J., Hales, C., Rich, S., Archer, S. (eds) Textbook of Pulmonary Vascular Disease. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-87429-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-87429-6_16

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-87428-9

  • Online ISBN: 978-0-387-87429-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics