Nitrite-Induced Improved Blood Circulation Associated With An Increase In A Pool Of Rbc-No With No Bioactivity

  • Joseph M. Rifkind
  • Enika Nagababu
  • Zeling Cao
  • Efrat Barbiro-Michaely
  • Avraham Mayevsky
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 645)


The reduction of nitrite by RBCs producing NO can play a role in regulating vascular tone. This hypothesis was investigated in rats by measuring the effect of nitrite infusion on mean arterial blood pressure (MAP), cerebral blood flow (CBF) and cerebrovascular resistance (CVR) in conjunction with the accumulation of RBC-NO. The nitrite infusion reversed the increase in MAP and decrease in CBF produced by L-NAME inhibition of e-NOS. At the same time there was a dramatic increase in RBC-NO. Correlations of RBC-NO for individual rats support a role for the regulation of vascular tone by this pool of NO. Furthermore, data obtained prior to treatment with L-NAME or nitrite are consistent with a contribution of RBC reduced nitrite in regulating vascular tone even under normal conditions. The role of the RBC in delivering NO to the vasculature was explained by the accumulation of a pool of bioactive NO in the RBC when nitrite is reduced by deoxygenated hemoglobin chains. A comparison of R and T state hemoglobin demonstrated a potential mechanism for the release of this NO in the Tstate present at reduced oxygen pressures when blood enters the microcirculation. Coupled with enhanced hemoglobin binding to the membrane under these conditions the NO can be released to the vasculature.


Nitric Oxide Cerebral Blood Flow Vascular Tone Mean Arterial Blood Pressure Cerebral Vasospasm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. J. Ignarro, G. Cirino, A. Casini and C. Napoli, Nitric oxide as a signaling molecule in the vascular system: an overview, J Cardiovasc Pharmacol 34(6), 879-886 (1999).PubMedCrossRefGoogle Scholar
  2. 2.
    E. Nagababu, S. Ramasamy, D. R. Abernethy and J. M. Rifkind, Active nitric oxide produced in the red cell under hypoxic conditions by deoxyhemoglobin-mediated nitrite reduction, J Biol Chem 278 (47), 46349-46356 (2003).PubMedCrossRefGoogle Scholar
  3. 3.
    K. Cosby, K. S. Partovi, J. H. Crawford, R. P. Patel, C. D. Reiter, S. Martyr, B. K. Yang, M. A. Waclawiw, G. Zalos, X. Xu, K. T. Huang, H. Shields, D. B. Kim-Shapiro, A. N. Schechter, R. O. 3. Cannon and M. T. Gladwin, Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation, Nat Med 9(12), 1498-1505 (2003).Google Scholar
  4. 4.
    R. M. Pluta, A. Dejam, G. Grimes, M. T. Gladwin and E. H. Oldfield, Nitrite infusions to prevent delayed cerebral vasospasm in a primate model of subarachnoid hemorrhage, Jama 293(12), 1477-1484 (2005).PubMedCrossRefGoogle Scholar
  5. 5.
    J. H. Crawford, T. S. Isbell, Z. Huang, S. Shiva, B. K. Chacko, A. N. Schechter, V. M. Darley-Usmar, J. D. Kerby, J. D. Lang, Jr., D. Kraus, C. Ho, M. T. Gladwin and R. P. Patel, Hypoxia, red blood cells, and nitrite regulate NO-dependent hypoxic vasodilation, Blood 107(2), 566-574 (2006).PubMedCrossRefGoogle Scholar
  6. 6.
    J. M. Rifkind, E. Nagababu, E. Barbiro-Michaely, S. Ramasamy, R. M. Pluta and A. Mayevsky, Nitrite infusion increases cerebral blood flow and decreases mean arterial blood pressure in rats: a role for red cell NO, Nitric Oxide 16(4), 448-456 (2007).PubMedCrossRefGoogle Scholar
  7. 7.
    E. Nagababu, S. Ramasamy and J. M. Rifkind, S-nitrosohemoglobin: A mechanism for its formation in conjuction with nitrite reduction by deoxyhemoglobin., Nitric Oxide(In press) (2006).Google Scholar
  8. 8.
    K. R. S. Wadhwani, Blood flow in the central and peripheral nervous systems., In: Lase Doppler Blood Flowmetry, edited by Shephard AP and Oberg PA. Boston: Kulvar Academic Pub. 265-304 (1996).Google Scholar
  9. 9.
    A. Mayevsky and B. Chance, Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer, Science 217(4559), 537-540 (1982).PubMedCrossRefGoogle Scholar
  10. 10.
    A. Mayevsky, Brain NADH redox state monitored in vivo by fiber optic surface fluorometry, Brain Res 319(1), 49-68 (1984).PubMedGoogle Scholar
  11. 11.
    K. Chida, M. Miyagawa, W. Usui, H. Kawamura, T. Takasu and K. Kanmatsuse, Effects of chemical stimulation of the rostral and caudal ventrolateral medulla on cerebral and renal microcirculation in rats, J Auton Nerv Syst 51(1), 77-84 (1995).PubMedCrossRefGoogle Scholar
  12. 12.
    M. Brunori, E. Antonini, J. Wyman, R. Zito, J. F. Taylor and A. Rossi-Fanelli, Studies on the Oxidation- Reduction Potentials of Heme Proteins. Ii. Carboxypeptidase Digests of Human Hemoglobin, J Biol Chem 239, 2340-2344 (1964).PubMedGoogle Scholar
  13. 13.
    R. F. Eich, T. Li, D. D. Lemon, D. H. Doherty, S. R. Curry, J. F. Aitken, A. J. Mathews, K. A. Johnson, R. D. Smith, G. N. Phillips, Jr. and J. S. Olson, Mechanism of NO-induced oxidation of myoglobin and hemoglobin, Biochemistry 35 (22), 6976-6983 (1996).PubMedCrossRefGoogle Scholar
  14. 14.
    A. Tsuneshige, K. Imai and I. Tyuma, The binding of hemoglobin to red cell membrane lowers its oxygen affinity, J Biochem (Tokyo) 101(3), 695-704 (1987).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Joseph M. Rifkind
    • 1
  • Enika Nagababu
    • 1
  • Zeling Cao
    • 1
  • Efrat Barbiro-Michaely
    • 2
  • Avraham Mayevsky
    • 2
  1. 1.Molecular Dynamics SectionNational Institute of Aging 5600 Nathan Shock Drive Baltimore
  2. 2.The Mina and Everard Goodman Faculty of Life SciencesBar-Ilan University Ramat GanIsrael

Personalised recommendations