Advertisement

Single Shot T1ρ Magnetic Resonance Imaging Of Metabolically Generated Water In Vivo

  • Eric A. Mellon
  • R. Shashank Beesam
  • Mallikarjunarao Kasam
  • James E. Baumgardner
  • Arijitt Borthakur
  • Walter R. WitscheyJr.
  • Ravinder Reddy
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 645)

Abstract

The use of Oxygen-17 MRI provides great promise for the clinically-useful quantification of metabolism. To bring techniques based on 17O closer to clinical application, we demonstrate imaging of metabolically generated H2 17O in pigs after 17O2 delivery with increased temporal resolution T1ρ-weighted imaging and precision delivery of 17O2 gas. The kinetics of the appearance of H2 17O in pig brains are displayed with one to two minutes of 17O2 delivery, the shortest delivery times reported in the literature. It is also shown that H2 17O concentrations can be quantified with single shot T1ρ imaging based on a balanced steady state free precession readout, and that with this strategy pausing to reduce T1 saturation increases sensitivity to H2 17O over acquisition in the steady state. Several additional considerations with this sequence, which can be generalized to any pre-encoding cluster, such as energy deposition are considered.

Keywords

Arterial Input Function Balance Steady State Free Precession 15mL Conical Tube Steady State Acquisition Short Delivery Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. R. Tailor, J. E. Baumgardner, R. R. Regatte, J. S. Leigh, R. Reddy, Proton MRI of metabolically produced H2 17O using an efficient 17O2 delivery system, Neuroimage 22(2), 611-618 (2004).PubMedCrossRefGoogle Scholar
  2. 2.
    X. H. Zhu, N. Zhang, Y. Zhang, X. Zhang, K. Ugurbil, W. Chen, In vivo 17O NMR approaches for brain study at high field, NMR Biomed 18(2), 83-103 (2005).PubMedCrossRefGoogle Scholar
  3. 3.
    A. J. de Crespigny, H. E. D’Arceuil, T. Engelhorn, M. E. Moseley, MRI of focal cerebral ischemia using (17)O-labeled water, Magn Reson Med 43(6), 876-883 (2000).PubMedCrossRefGoogle Scholar
  4. 4.
    I. Ronen, H. Merkle, K. Ugurbil, G. Navon, Imaging of H217O distribution in the brain of a live rat by using proton-detected 17O MRI, Proc Natl Acad Sci USA 95(22), 12934-12939 (1998).PubMedCrossRefGoogle Scholar
  5. 5.
    T. Arai, S. Nakao, S. Morikawa, T. Inubushi, T. Yokoi, K. Shimizu, K. Mori, Measurement of local cerebral blood flow by magnetic resonance imaging: in vivo autoradiographic strategy using 17O-labeled water, Brain Res Bull 45(5), 451-456 (1998).PubMedCrossRefGoogle Scholar
  6. 6.
    R. Reddy, A. H. Stolpen, J. S. Leigh, Detection of 17O by proton T1 rho dispersion imaging, J Magn Reson B 108(3), 276-279 (1995).PubMedCrossRefGoogle Scholar
  7. 7.
    A. Borthakur, J. Hulvershorn, E. Gualtieri, A. J. Wheaton, S. Charagundla, M. A. Elliott, R. Reddy, A pulse sequence for rapid in vivo spin-locked MRI, J Magn Reson Imaging 23(4), 591-596 (2006).PubMedCrossRefGoogle Scholar
  8. 8.
    K. Scheffler, S. Lehnhardt, Principles and applications of balanced SSFP techniques, Eur Radiol 13(11), 2409-2418 (2003).PubMedCrossRefGoogle Scholar
  9. 9.
    A. L. Hopkins, E. M. Haacke, J. Tkach, R. G. Barr, C. B. Bratton, Improved sensitivity of proton MR to oxygen-17 as a contrast agent using fast imaging: detection in brain, Magn Reson Med 7(2), 222-229 (1988).Google Scholar
  10. 10.
    J. Pekar, L. Ligeti, Z. Ruttner, R. C. Lyon, T. M. Sinnwell, P. van Gelderen, D. Fiat, C. T. Moonen, A. C. McLaughlin, In vivo measurement of cerebral oxygen consumption and blood flow using 17O magnetic resonance imaging, Magn Reson Med 21(2), 313-319 (1991).PubMedCrossRefGoogle Scholar
  11. 11.
    X. Zhang, X. H. Zhu, R. Tian, Y. Zhang, H. Merkle, W. Chen, Measurement of arterial input function of 17O water tracer in rat carotid artery by using a region-defined (REDE) implanted vascular RF coil, Magma 16(2), 77-85 (2003).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Eric A. Mellon
    • 1
  • R. Shashank Beesam
    • 1
  • Mallikarjunarao Kasam
    • 2
  • James E. Baumgardner
    • 3
  • Arijitt Borthakur
    • 1
  • Walter R. WitscheyJr.
    • 1
  • Ravinder Reddy
    • 1
  1. 1.Department of RadiologyMMRRCC University of PennsylvaniaPhiladelphia
  2. 2.Department of RadiologyUniversity of Miami
  3. 3.Department of AnesthesiologyUniversity of PennsylvaniaPhiladelphia

Personalised recommendations