Histological Basis Of Mr/Optical Imaging Of Human Melanoma Mouse Xenografts Spanning A Range Of Metastatic Potentials

  • He N. Xu
  • Rong Zhou
  • Shoko Nioka
  • Britton Chance
  • Jerry D. Glickson
  • Lin Z. Li
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 645)


Predicting tumor aggressiveness will greatly facilitate cancer treatment. We have previously reported investigations utilizing various MR/optical imaging methods to differentiate human melanoma mouse xenografts spanning a range of metastatic potentials. The purpose of this study was to explore the histological basis of the previously reported imaging findings. We obtained the cryogenic tumor sections of three types of human melanoma mouse xenografts with their metastatic potentials falling in the rank order A375P<A375M<C8161. Both H&E and DAPI counter-stained TUNEL analysis showed distinct core-rim difference in aggressive tumors, while the core has apparently many viable cells forming structure of vascular-like networks and the rim appears viable-cell dense. The least aggressive ones (A375P) are relatively more homogenous without distinct core-rim difference. However, our previous study showed the core of more aggressive melanoma has higher Fp/NADH redox ratio, indicative of nutritional deprivation. Additionally, the low perfusion/blood vessel permeability measured previously by DCE-MRI indicated these cells should be under starvation presumably accompanied with more cell death. Thus, it remains an open question what the survival status of the cells in the core of more aggressive melanoma is. We are currently investigating whether these cells are in autophagic state, a possible cell survival mechanism under starvation conditions.


Metastatic Potential Melanoma Cell Line Human Melanoma Athymic Nude Mouse Vasculogenic Mimicry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. J. Hendrix, E. A. Seftor, Y. W. Chu, R. E. Seftor, R. B. Nagle, K. M. McDaniel, S. P. Leong, K. H. Yohem, A. M. Leibovitz, F. L. Meyskens, Jr. and et al., Coexpression of vimentin and keratins by human melanoma tumor cells: correlation with invasive and metastatic potential, Journal of the National Cancer Institute 84(3), 165-174 (1992).PubMedCrossRefGoogle Scholar
  2. 2.
    J. M. Kozlowski, I. R. Hart, I. J. Fidler and N. Hanna, A human melanoma line heterogeneous with respect to metastatic capacity in athymic nude mice, Journal of the National Cancer Institute 72(4), 913-917 (1984).PubMedGoogle Scholar
  3. 3.
    D. R. Welch, J. E. Bisi, B. E. Miller, D. Conaway, E. A. Seftor, K. H. Yohem, L. B. Gilmore, R. E. Seftor, M. Nakajima and M. J. Hendrix, Characterization of a highly invasive and spontaneously metastatic human malignant melanoma cell line, International Journal of Cancer 47(2), 227-237 (1991).CrossRefGoogle Scholar
  4. 4.
    M. J. Hendrix, E. A. Seftor, Y. W. Chu, K. T. Trevor and R. E. Seftor, Role of intermediate filaments in migration, invasion and metastasis, Cancer Metastasis Rev 15(4), 507-525 (1996).PubMedCrossRefGoogle Scholar
  5. 5.
    E. A. Seftor, R. E. Seftor and M. J. Hendrix, Selection of invasive and metastatic subpopulations from a heterogeneous human melanoma cell line, Biotechniques 9(3), 324-331 (1990).PubMedGoogle Scholar
  6. 6.
    M. J. Hendrix, E. A. Seftor, R. E. Seftor and I. J. Fidler, A simple quantitative assay for studying the invasive potential of high and low human metastatic variants, Cancer Letters 38, 137-147 (1987).PubMedCrossRefGoogle Scholar
  7. 7.
    L. Z. Li, R. Zhou, T. Zhong, L. Moon, E. J. Kim, H. Qiao, S. Pickup, M. J. Hendrix, D. Leeper, B. Chance and J. D. Glickson, Predicting melanoma metastatic potential by optical and magnetic resonance imaging, Advances in Experimental Medicine and Biology 599,67-78 (2007).PubMedCrossRefGoogle Scholar
  8. 8.
    A. J. Maniotis, R. Folberg, A. Hess, E. A. Seftor, L. M. Gardner, J. Pe’er, J. M. Trent, P. S. Meltzer and M. J. Hendrix, Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry, American Journal of Pathology 155(3), 739-752 (1999).PubMedGoogle Scholar
  9. 9.
    M. J. Hendrix, E. A. Seftor, A. R. Hess and R. E. Seftor, Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma, Nature Reviews. Cancer 3(6), 411-421 (2003).PubMedCrossRefGoogle Scholar
  10. 10.
    M. J. Hendrix, E. A. Seftor, D. A. Kirschmann, V. Quaranta and R. E. Seftor, Remodeling of the microenvironment by aggressive melanoma tumor cells, Annals of the New York Academy of Sciences 995,151-161 (2003).PubMedCrossRefGoogle Scholar
  11. 11.
    B. Chance, Flavoproteins of mitochondrial fatty acid oxidation in Flavins and Flavoproteins, edited by E. C. Slater (Elsevier, 1966), pp498-510.Google Scholar
  12. 12.
    B. Chance and H. Baltscheffsky, Respiratory Enzymes in Oxidative Phosphorylation. VII. Binding of IntramitochondrialReduced Pyridine Nucleotide, The Journal of Biological Chemistry 233(3), 736-739 (1958).PubMedGoogle Scholar
  13. 13.
    M. Ranji, S. Kanemoto, M. Matsubara, M. A. Grosso, J. H. Gorman, 3rd, R. C. Gorman, D. L. Jaggard and B. Chance, Fluorescence spectroscopy and imaging of myocardial apoptosis, Journal of Biomedical Optics 11(6), 064036 (2006).PubMedCrossRefGoogle Scholar
  14. 14.
    K. Degenhardt, R. Mathew, B. Beaudoin, K. Bray, D. Anderson, G. Chen, C. Mukherjee, Y. Shi, C. Gelinas, Y. Fan, D. A. Nelson, S. Jin and E. White, Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis, Cancer Cell 10(1), 51-64 (2006).PubMedCrossRefGoogle Scholar
  15. 15.
    V. Karantza-Wadsworth, S. Patel, O. Kravchuk, G. Chen, R. Mathew, S. Jin and E. White, Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis, Genes & Development 21(13), 1621-1635 (2007).CrossRefGoogle Scholar
  16. 16.
    J. J. Lum, D. E. Bauer, M. Kong, M. H. Harris, C. Li, T. Lindsten and C. B. Thompson, Growth factor regulation of autophagy and cell survival in the absence of apoptosis, Cell 120(2), 237-248 (2005).PubMedCrossRefGoogle Scholar
  17. 17.
    A. L. Edinger and C. B. Thompson, Death by design: apoptosis, necrosis and autophagy, Current Opinion in Cell Biology 16(6), 663-669 (2004).PubMedCrossRefGoogle Scholar
  18. 18.
    J. Marx, Autophagy: Is It Cancer’s Friend or Foe? Science 312(5777), 1160-1161 (2006).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • He N. Xu
    • 1
  • Rong Zhou
    • 1
  • Shoko Nioka
    • 1
  • Britton Chance
    • 1
  • Jerry D. Glickson
    • 1
  • Lin Z. Li
    • 1
    • 2
  1. 1.Department of RadiologyMolecular Imaging LaboratoryPhiladelphiaBritton Chance
  2. 2.Department of Biochemistry & BiophysicsJohnson Research Foundation, University of PennsylvaniaPhiladelphia

Personalised recommendations