Advertisement

Prognostic Potential Of The Pretherapeutic Tumor Oxygenation Status

  • Peter Vaupel
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 645)

Abstract

Hypoxia, a characteristic feature of locally advanced solid tumors, has emerged as a key factor of the tumor pathophysiome, since it can promote tumor progression and resistance to therapy. Independent of established prognostic parameters, such as clinical tumor stage, histology, histological grade and nodal status, hypoxia has been identified as an adverse prognostic factor for patient outcome. Studies of pretreatment tumor hypoxia involving direct assessment (polarographic oxygen tension measurements) have suggested a poor prognosis for patients with hypoxic tumors. These investigations indicate a worse disease-free survival for patients with hypoxic cancers of the uterine cervix or soft tissue sarcomas. In head & neck cancers, the studies suggest that pretherapeutic hypoxia is prognostic for survival and local control.

Keywords

Cervical Cancer Neck Cancer Soft Tissue Sarcoma Uterine Cervix Neck Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Höckel, K. Schlenger, B. Aral, M. Mitze, U. Schäfer, and P. Vaupel, Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix, Cancer Res.56, 4509-4515 (1996).PubMedGoogle Scholar
  2. 2.
    M. Höckel and P. Vaupel, Tumor hypoxia: Definitions and current clinical, biologic and molecular aspects, J. Natl. Cancer Inst.93, 266-276 (2001).PubMedCrossRefGoogle Scholar
  3. 3.
    P. Vaupel, O. Thews, and M. Höckel, Treatment resistance of solid tumors: Role of hypoxia and anemia, Med. Oncol.18, 243-259 (2001).Google Scholar
  4. 4.
    P. Vaupel, A. Mayer, and M. Höckel, Tumor hypoxia and malignant progression, Methods Enzymol.381, 335-354 (2004).PubMedCrossRefGoogle Scholar
  5. 5.
    P. Vaupel, The role of hypoxia-induced factors in tumor progression, Oncologist9 (Suppl. 5), 10-17 (2004).CrossRefGoogle Scholar
  6. 6.
    P. Vaupel and A. Mayer, Hypoxia in cancer: significance and impact on clinical outcome, Cancer Metastasis Rev.26, 225-239 (2007).PubMedCrossRefGoogle Scholar
  7. 7.
    G.L. Semenza, Hypoxia, clonal selection, and the role of HIF-1 in tumor progression, Crit. Rev. Biochem. Mol. Biol.35, 71-103 (2000).PubMedCrossRefGoogle Scholar
  8. 8.
    G.L. Semenza, Involvement of hypoxia-inducible factor 1 in human cancer, Intern. Med.41, 79-83 (2002).PubMedCrossRefGoogle Scholar
  9. 9.
    G.L. Semenza, HIF-1 and tumor progression: Pathophysiology and therapeutics, Trends Mol. Med.8, S62- S67 (2002).PubMedCrossRefGoogle Scholar
  10. 10.
    A.L. Harris, Hypoxia – A key regulatory factor in tumour growth, Nature Rev. Cancer2, 38-47 (2002).CrossRefGoogle Scholar
  11. 11.
    P. Vaupel and A. Mayer, Effects of anaemia and hypoxia on tumour biology, in: Anaemia in Cancer, edited by C. Bokemeyer and H. Ludwig, 2nd Edition (Elsevier, Edinburgh, London, 2005), pp. 47-66.Google Scholar
  12. 12.
    B.J. Moeller, R.A. Richardson, and M.W. Dewhirst, Hypoxia and radiotherapy: opportunities for improved outcomes in cancer treatment, Cancer Metastasis Rev.26, 241-248 (2007).PubMedCrossRefGoogle Scholar
  13. 13.
    P. Vaupel, M. Höckel, and A. Mayer, Detection and characterization of tumor hypoxia using pO2 histography, Antioxid. Redox Signal.9, 1221-1235 (2007).PubMedCrossRefGoogle Scholar
  14. 14.
    M. Höckel, C. Knoop, K. Schlenger, B. Vorndran, E. Baussmann, M. Mitze, P.G. Knapstein, and P. Vaupel, Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix, Radiother. Oncol.26, 45-50 (1993).PubMedCrossRefGoogle Scholar
  15. 15.
    A. Fyles, M. Milosevic, D. Hedley, M. Pintilie, W. Levin, L. Manchul, and R.P. Hill, Tumor hypoxia has independent predictor impact only in patients with node-negative cervix cancer, J. Clin. Oncol.20, 680- 687 (2002).PubMedCrossRefGoogle Scholar
  16. 16.
    T.H. Knocke, H.D. Weitmann, H.J. Feldmann, E. Selzer, and R. Potter, Intratumoral pO2-measurements as predictive assay in the treatment of carcinoma of the uterine cervix, Radiother. Oncol.53, 99-104 (1999).PubMedCrossRefGoogle Scholar
  17. 17.
    K. Sundfør, H. Lyng, C.G. Trope, and E.K. Rofstad, Treatment outcome in advanced squamous cell carcinomas of the uterine cervix: relationship to pretreatment tumor oxygenation and vascularization, Radiother. Oncol.54, 101-107 (2000).PubMedCrossRefGoogle Scholar
  18. 18.
    M. Nordsmark, J. Loncaster, C. Aquino-Parsons, S.C. Chou, V. Gebski, C. West, J.C. Lindgaard, H. Havsteen, S.E. Davidson, R. Hunter, J.A. Raleigh, and J. Overgaard, The prognostic value of pimonidazole and tumour pO2 in human cervix carcinomas after radiation therapy: A prospective international multi-center study, Radiother. Oncol.80, 123-131 (2006).PubMedCrossRefGoogle Scholar
  19. 19.
    R.A. Gatenby, H.B. Kessler, J.S. Rosenblum, L.R. Coia, P.J. Moldofsky, W.H. Hartz, and G.J. Broder, Oxygen distribution in squamous cell carcinoma metastases and its relationship to outcome of radiation therapy, Int. J. Radiat. Oncol. Biol. Phys.14, 831-838 (1988).PubMedGoogle Scholar
  20. 20.
    M. Nordsmark, S.M. Bentzen, V. Rudat, D. Brizel, E. Lartigau, P. Stadler, A. Becker, M. Adam, M. Molls, J. Dunst, and D.J. Terris, Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study, Radiother. Oncol.77, 18-24 (2005).Google Scholar
  21. 21.
    M. Nordsmark and J. Overgaard, Tumor hypoxia is independent of hemoglobin and prognostic for locoregional tumor control after primary radiotherapy in advanced head and neck cancer, Acta Oncol.43, 396- 403 (2004).PubMedCrossRefGoogle Scholar
  22. 22.
    J. Dunst, P. Stadler, A. Becker, C. Lautenschläger, T. Pelz, G. Hänsgen, M. Molls, and T. Kuhnt, Tumor volume and tumor hypoxia in head and neck cancers: The amount of the hypoxic volume is important, Strahlenther. Onkol.179, 521-526 (2003).PubMedCrossRefGoogle Scholar
  23. 23.
    D.M. Brizel, R.K. Dodge, R.W. Clough, and M.W. Dewhirst, Oxygenation of head and neck cancer: changes during radiotherapy and impact on treatment outcome, Radiother. Oncol.53, 113-117 (1999).PubMedCrossRefGoogle Scholar
  24. 24.
    V. Rudat, P. Stadler, A. Becker, B. Vanselow, A. Dietz, M. Wannenmacher, M. Molls, J. Dunst, and H.J. Feldmann, Predictive value of the tumor oxygenation by means of pO2 histography in patients with advanced head and neck cancer, Strahlenther. Onkol.177, 462-468 (2001).PubMedCrossRefGoogle Scholar
  25. 25.
    M.F. Adam, E.C. Gabalski, D.A. Bloch, J.W. Oehlert, J.M. Brown, A.A. Elsaid, H.A. Pinto, and D.J. Terris, Tissue oxygen distribution in head and neck cancer patients, Head Neck21, 146-153 (1999).PubMedCrossRefGoogle Scholar
  26. 26.
    D.M. Brizel, S.P. Scully, J.M. Harrelson, L.J. Layfield, J.M. Bean, L.R. Prosnitz, and M.W. Dewhirst, Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma, Cancer Res.56, 941-943 (1996).PubMedGoogle Scholar
  27. 27.
    M. Nordsmark, J. Alsner, J. Keller, O.S. Nielsen, O.M. Jensen, M.R. Horsman, and J. Overgaard, Hypoxia in human soft tissue sarcomas: Adverse impact on survival and no association with p53 mutations, Brit. J. Cancer84, 1070-1075 (2001).PubMedCrossRefGoogle Scholar
  28. 28.
    G. Pitson and A. Fyles, Uterine Cervix Cancer, in: Prognostic Factors in Cancer, edited by M.K. Gospodarowicz, D.E. Henson, R.V.P. Hutter, B. O’Sullivan, L.H. Sobin, and Ch. Wittekind, 2nd Edition (Wiley-Liss, New York, Chichester, 2001), pp. 501-514.Google Scholar
  29. 29.
    P. Okunieff, I. Ding, P. Vaupel, and M. Höckel, Evidence against hypoxia as the primary cause of tumor aggressiveness. Adv. Exp. Med. Biol. 510, 69-75 (2003).PubMedGoogle Scholar
  30. 30.
    J.M. Brown and A.J. Giaccia, The unique physiology of solid tumors: opportunities (and problems) for cancer therapy, Cancer Res.58, 1408-1416 (1998).PubMedGoogle Scholar
  31. 31.
    J.M. Brown, Exploiting the hypoxic cancer cell: mechanisms and therapeutic strategies, Mol. Med. Today 6, 157-162 (2000).PubMedCrossRefGoogle Scholar
  32. 32.
    S. Kizaka-Kondoh, M. Inoue, H. Harada, and M. Hiraoka, Tumor hypoxia: A target for selective cancer therapy, Cancer Sci.94, 1021-1028 (2003).PubMedCrossRefGoogle Scholar
  33. 33.
    S.M. Evans and C.J. Koch, Prognostic significance of tumor oxygenation in humans, Cancer Lett.195, 1- 16 (2003).PubMedCrossRefGoogle Scholar
  34. 34.
    C. Menon and D.L. Fraker, Tumor oxygenation status as prognostic marker, Cancer Lett.221, 225-235 (2005).Google Scholar
  35. 35.
    J.L. Tatum, G.J. Kelloff, R.J. Gillies, J.M. Arbeit, J.M. Brown, K.S. Chao, J.D. Chapman, W.C. Eckelman, A.W. Fyles, A.J. Giaccia, R.P. Hill, C.J. Koch, M.C. Krishna, K.A. Krohn, J.S. Lewis, R.P. Mason, G. Melillo, A.R. Padhani, G. Powis, J.G. Rajendran, R. Reba, S.P. Robinson, G.L. Semenza, H.M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy, Int. J. Radiat. Biol.82, 699-757 (2006).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Peter Vaupel
    • 1
  1. 1.Institute of Physiology and PathophysiologyUniversity of MainzDuesbergweg 6Germany

Personalised recommendations