Advertisement

Iodinated Contrast Media Decrease Renomedullary Blood Flow

A possible cause of contrast media-induced nephropathy
  • Per Liss
  • Peter Hansell
  • Per-Ola Carlsson
  • Angelica Fasching
  • Fredrik Palm
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 645)

Abstract

The renal medulla has been implicated as a key target for contrast mediainduced nephropathy (CIN). Although the effects of contrast media (CM) on whole kidney blood flow are well characterized, the effect of CM on renal medullary blood flow has been controversial. It has been reported that an extremely high dose of a high osmolar CM (iothalamate; 2900 mg I/kg bw) injected rapidly increased the renal outer medullary blood flow (OMBF). However, more clinical relevant doses consistently result in a sustained decrease in medullary blood flow. Furthermore, simultaneous measurements using both laser-Doppler flowmetry and hydrogen washout yield similar results of a decrease in OMBF after CM administration. CM induced a transient 28% decrease in the laser-Doppler signal from the outer medulla, while the hydrogen washout rate in the same region was reduced by approximately 50%. Furthermore, CM administration consistently results in decreased medullary oxygen tension (PO2). The renal medulla works already during normal physiological conditions at the verge of hypoxia, and the majority of the studies published so far are in agreement with the hypothesis that CIN may have its origin in a further reduction in blood flow and/or oxygen availability of this region of the kidney.

Keywords

Renal Medulla Outer Medulla Medullary Blood Flow Radiographic Contrast Agent Kidney Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. H. Hou, D. A. Bushinsky, J. B. Wish, and J. J. Cohen, Hospital-acquired renal insufficiency. A prospective study, Am J Med 63(243-248 (1983).CrossRefGoogle Scholar
  2. 2.
    A. S. Berns, Nephrotoxicity of contrast media, Kidney Int 36(730-740 (1989).PubMedCrossRefGoogle Scholar
  3. 3.
    C. J. Davidson, M. Hlatky, K. G. Morris, K. Pieper, T. N. Skelton, S. J. Schwab, and T. M. Bashore, Cardiovascular and renal toxicity of a nonionic radiographic contrast agent after cardiac catheterization. A prospective trial, Ann Intern Med 110(2), 119-124 (1989).PubMedGoogle Scholar
  4. 4.
    E. M. Lautin, N. J. Freeman, A. H. Schoenfeld, C. W. Bakal, N. Haramiti, A. C. Friedman, J. L. Lautin, S. Braha, S. Sprayregen, and I. Belizon, Radiocontrast-associated renal dysfunction: a comparison of lowerosmolality and conventional high-osmolality contrast media., Am J Roentgenol 157(July), 59-65 (1991).Google Scholar
  5. 5.
    P. S. Parfrey, S. M. Graffiths, B. B.J., M. D. Paul, M. Genge, J. Withers, N. Farid, and P. J. McManamon, Contrast material-induced renal failure in patients with diabetes mellitus, renal insufficiency, or both, New Engl J Med 320(3), 143-149 (1989).Google Scholar
  6. 6.
    C. H. Coggins, and L. S. Fang, Acute renal failure associated with antibiotics, anesthetic agents, and radiographic contrast agents, in: Acute renal failure, edited by B. M. Brenner, and J. M. Lazareus (Churchill Livingstone, 1988), pp. 319-352.Google Scholar
  7. 7.
    P. Persson, P. Hansell, and P. Liss, Pathophysiology of contrast medium induced nephropathy., Kidney Int 68(68), 14-22 (2005).PubMedCrossRefGoogle Scholar
  8. 8.
    P. Liss, K. Aukland, P. O. Carlsson, F. Palm, and P. Hansell, Influence of iothalamate on regional renal hemodynamics and oxygenation in the rat, Acta Radiol 46(8), 823-829 (2005).PubMedCrossRefGoogle Scholar
  9. 9.
    A. Nygren, H. R. Ulfendahl, P. Hansell, and U. Erikson, Effects of intravenous contrast media on cortical and medullary blood flow in the rat kidney, Invest Radiol 23(753-761 (1988).PubMedCrossRefGoogle Scholar
  10. 10.
    M. Brezis, and S. Rosen, Hypoxia of the renal medulla - its implication for disease, N Engl J Med 332(10), 647-655 (1995).PubMedCrossRefGoogle Scholar
  11. 11.
    F. Palm, J. Cederberg, P. Hansell, P. Liss, and P. O. Carlsson, Reactive oxygen species cause diabetesinduced decrease in renal oxygen tension, Diabetologia 46(8), 1153-1160 (2003).PubMedCrossRefGoogle Scholar
  12. 12.
    F. Palm, P. Hansell, G. Ronquist, A. Waldenstrom, P. Liss, and P. O. Carlsson, Polyol-pathway-dependent disturbances in renal medullary metabolism in experimental insulin-deficient diabetes mellitus in rats, Diabetologia 47(7), 1223-1231 (2004).PubMedCrossRefGoogle Scholar
  13. 13.
    P. Liss, A. Nygren, N. P. Revsbech, and H. Ulfendahl, Intrarenal oxygen tension measured by a modified Clark electrode at normal and low blood pressure and after injection of x-ray contrast media, Pflügers Arch 434(705-711 (1997).PubMedCrossRefGoogle Scholar
  14. 14.
    R. W. Katzberg, T. W. Morris, F. A. Burgerner, D. E. Kamm, and H. W. Fischer, Renal renin and hemodynamic responses to selective renal artery catheterization and angiography, Invest Radiol 12(381- 388 (1977).PubMedCrossRefGoogle Scholar
  15. 15.
    G. Lund, S. Einzig, B. A. Rysavy, B. Borgwardt, E. Salomonowitz, A. Cragg, and K. Amplatz, Role of ischemia in contrast-induced renal damage: an experimental study, Circulation 69(4), 783-789 (1984).PubMedGoogle Scholar
  16. 16.
    G. L. Bakris, and C. Burnett, A role for calcium in radiocontrast-induced reductions in renal hemodynamics, Kidney Int 27(465-468 (1985).PubMedCrossRefGoogle Scholar
  17. 17.
    S. K. Morcos, S. Oldroyd, and J. Haylor, Effect of radiographic contrast media on endothelium derived nitric oxide-dependent renal vasodilatation, Br J Radiol 70(154-159 (1997).PubMedGoogle Scholar
  18. 18.
    S. D. Oldroyd, L. Fang, J. L. Haylor, M. S. Yates, A. M. El Nahas, and S. K. Morcos, Effects of adenosine receptor antagonists on the responses to contrast media in the isolated rat kidney, Clin Sci (Lond) 98(3), 303-11 (2000).Google Scholar
  19. 19.
    R. W. Katzberg, G. Schulman, L. G. Meggs, W. J. H. Caldicott, M. M. Damiano, and N. K. Hollenberg, Mechanism of the renal response to contrast medium in dogs: decrease in renal function due to hypertonicity, Invest Radiol 18(74-80 (1983).PubMedCrossRefGoogle Scholar
  20. 20.
    J. Ueda, A. Nygren, P. Hansell, and H. R. Ulfendahl, Effect of intravenous contrast media on proximal and distal tubular hydrostatic pressure in the rat kidney, Acta Radiol 34(83-87 (1993).PubMedGoogle Scholar
  21. 21.
    S. N. Heyman, B. A. Clark, N. Kaiser, K. Spokes, S. Rosen, M. Brezis, and F. H. Epstein, Radiocontrast agents induce endothelin release in vivo and in vitro, J Am Soc Nephrol 3(1), 58-65 (1992).PubMedCrossRefGoogle Scholar
  22. 22.
    J. E. Bird, M. R. Giancarli, J. R. Megill, and S. K. Durham, Effects of endothelin in radiocontrast-induced nephropathy in rats are mediated through endothelin-A receptors, J Am Soc Nephrol 7(1153-1157 (1996).PubMedGoogle Scholar
  23. 23.
    L. Cantley, K. Spokes, B. Clark, E. G. McMahon, J. Carter, and F. H. Epstein, Role of endothelin and prostaglandins in radiocontrast-induced renal artery constriction, Kidney Int 44(1217-1223 (1993).PubMedCrossRefGoogle Scholar
  24. 24.
    P. Liss, P. O. Carlsson, A. Nygren, F. Palm, and P. Hansell, Et-A Receptor Antagonist BQ123 Prevents Radiocontrast Media-Induced Renal Medullary Hypoxia, Acta Radiol 44(1), 111-7 (2003).PubMedCrossRefGoogle Scholar
  25. 25.
    D. P. Brooks, and P. Nambi, Blockade of radio-contrast induced nephrotoxicity by the endothelin receptor antagonist, SB 209670, Nephron 72(629-636 (1996).PubMedCrossRefGoogle Scholar
  26. 26.
    N. C. Sandgaard, and P. Bie, Natriuretic effect of non-pressor doses of endothelin-1 in conscious dogs, J Physiol 494(809-18 (1996).PubMedGoogle Scholar
  27. 27.
    T. J. Rabelink, K. A. Kaasjager, P. Boer, E. G. Stroes, B. Braam, and H. A. Koomans, Effects of endothelin- 1 on renal function in humans: implications for physiology and pathophysiology, Kidney Int 46(2), 376-81 (1994).PubMedCrossRefGoogle Scholar
  28. 28.
    P. L. Khimenko, T. M. Moore, and A. E. Taylor, Blocked ETA receptors prevent ischemia and reperfusion injury in rat lungs, J Appl Physiol 80(1), 203-7 (1996).PubMedGoogle Scholar
  29. 29.
    S. N. Heyman, M. Brezis, F. H. Epstein, K. Spokes, P. Silva, and S. Rosen, Early renal medullary hypoxic injury from radiocontrast and indomethacin, Kidney Int 40(4), 632-642 (1991).PubMedCrossRefGoogle Scholar
  30. 30.
    P. Liss, A. Nygren, U. Olsson, H. R. Ulfendahl, and U. Erikson, Effects of contrast media and mannitol on renal medullary blood flow and red cell aggregation in the rat kidney, Kidney Int 49(5), 1268-1275 (1996).PubMedCrossRefGoogle Scholar
  31. 31.
    P. Liss, P. O. Carlsson, F. Palm, and P. Hansell, Adenosine A1 receptors in contrast media-induced renal dysfunction in the normal rat, Eur Radiol 14(7), 1297-302 (2004).PubMedCrossRefGoogle Scholar
  32. 32.
    F. H. Epstein, M. Brezis, P. Silva, and S. Rosen, Protection against hypoxic injury in renal medulla, Mol Physiol 8(525-534 (1985).Google Scholar
  33. 33.
    W. S. Spielman, S. L. Britton, and M. J. Fiksen-Olsen, Effect of adenosine on the distribution of renal blood flow in dogs, Circ Res 46(3), 449-56 (1980).PubMedGoogle Scholar
  34. 34.
    D. Dinour, and M. Brezis, Effects of adenosine on intrarenal oxygenation, Am J Physiol 261(F787-F791 (1991).PubMedGoogle Scholar
  35. 35.
    P. C. Churchill, and A. Bidani, Renal effects of selective adenosine receptor agonists in anesthetized rats, Am J Physiol 252(2 Pt 2), F299-303 (1987).Google Scholar
  36. 36.
    W. S. Spielman, and L. J. Arend, Adenosin receptors and signaling in the kidney, Hypertension 17(117-130 (1991).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Per Liss
    • 1
  • Peter Hansell
    • 1
  • Per-Ola Carlsson
    • 1
  • Angelica Fasching
    • 1
  • Fredrik Palm
    • 1
  1. 1.Department of Oncology, Department of Medical Cell BiologyUppsala UniversitySweden

Personalised recommendations