Skip to main content

Mathematical Modeling of The Interaction Between Oxygen, Nitric Oxide And Superoxide

  • Conference paper
Oxygen Transport to Tissue XXX

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 645))

Abstract

Computer simulations were performed based on a multiple chemical species convection-diffusion model with coupled biochemical reactions for oxygen (O2), nitric oxide (NO), superoxide (O2·-), peroxynitrite (ONOO-), nitrite (NO2 -) and nitrate (NO3 -) in cylindrical geometry with blood flow through a 30 ⎧m diameter arteriole. Steady state concentration gradients of all chemical species were predicted for different O2·- production rates, superoxide dismutase (SOD) concentrations, and blood flow rates. Effects of additional O2·- production from dysfunctional endothelial nitric oxide synthase (eNOS) were also simulated. The model predicts that convection is essential for characterizing O2 partial pressure gradients (PO2) in the bloodstream and surrounding tissue, but has little direct effect on NO gradients in blood and tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.G. Buerk, K. Lamkin-Kennard, and D. Jaron, Modeling the influence of superoxide dismutase on superoxide and nitric oxide interactions, including reversible inhibition of oxygen consumption, Free Radic Biol Med 34(11), 1488-1503 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. X. Chen, D.G. Buerk, K.A. Barbee, and D. Jaron, A model of NO/O2 transport in capillary-perfused tissue containing an arteriole and venule pair, Ann Biomed Eng 35(11), 517-529 (2007).

    Article  PubMed  Google Scholar 

  3. X. Chen, D. Jaron, K.A. Barbee, and D.G. Buerk, The influence of radial RBC distribution, blood velocity profiles, and glycocalyx on coupled NO/O2 transport, J Appl Physiol 100(4), 482-492 (2006).

    Article  PubMed  CAS  Google Scholar 

  4. R.E. Huie, and S. Padmaja, The reaction of NO with superoxide, Free Radic Res Commun 18(4), 195-199 (1993).

    Article  PubMed  CAS  Google Scholar 

  5. S. Pfeiffer et al., Metabolic fate of peroxynitrite in aqueous solution. Reaction with nitric oxide and pHdependent decomposition to nitrite and oxygen in a 2:1 stoichiometry, J Biol Chem 272(6), 3465-3470 (1997).

    Article  PubMed  CAS  Google Scholar 

  6. I. Fridovich, Superoxide radical and superoxide dismutases, Annu Rev Biochem 64(6), 97-112 (1995).

    Article  PubMed  CAS  Google Scholar 

  7. B. Chen, and W.M. Deen, Analysis of the effects of cell spacing and liquid depth on nitric oxide and its oxidation products in cell cultures, Chem Res Toxicol 14(1), 135-147 (2001).

    Article  PubMed  CAS  Google Scholar 

  8. R.S. Lewis, and W.M. Deen. Kinetics of the reaction of nitric oxide with oxygen in aqueous solutions. Chem Res Toxicol 7(4), 568-574 (1994).

    Article  PubMed  CAS  Google Scholar 

  9. E. Carlsen, and J.H. Comroe, Jr., The rate of uptake of carbon monoxide and of nitric oxide by normal human erythrocytes and experimentally produced spherocytes, J Gen Physiol 42(1), 83-107 (1958).

    Article  PubMed  CAS  Google Scholar 

  10. K. Lamkin-Kennard, D. Jaron, and D.G. Buerk, Modeling the regulation of oxygen consumption by nitric oxide, Adv Exp Med Biol 510, 145-149 (2003).

    PubMed  CAS  Google Scholar 

  11. K.A. Lamkin-Kennard, D.G. Buerk, and D, Jaron. Interactions between NO and O2 in the microcirculation: a mathematical analysis, Microvasc Res 68(1), 38-50 (2004).

    Article  PubMed  CAS  Google Scholar 

  12. K.A. Lamkin-Kennard, D. Jaron, and D.G. Buerk, Impact of the F\r{a}hraeus effect on NO and O2 biotransport: a computer model, Microcirculation 11(11), 337-349 (2004).

    Article  PubMed  CAS  Google Scholar 

  13. N.J. Savill, R. Weller, and J.A. Sherratt, Mathematical modelling of nitric oxide regulation of rete peg formation in psoriasis, J Theor Biol 214(1), 1-16 (2002).

    Article  PubMed  CAS  Google Scholar 

  14. D.G. Buerk, and E.W. Bridges, A simplified algorithm for computing the variation in oxyhemoglobin saturation with pH, PCO2, T and DPG, Chem Eng Commun 47, 113-124 (1986).

    Article  CAS  Google Scholar 

  15. D.G. Buerk, Nitric oxide regulation of microvascular oxygen, Antioxid Redox Signal 9(7), 829-843 (2007).

    Article  PubMed  CAS  Google Scholar 

  16. D.G. Buerk, Can we model nitric oxide biotransport? A survey of mathematical models for a simple diatomic molecule with surprisingly complex biological activities, Annu Rev Biomed Eng 3, 109-143 (2001).

    Article  PubMed  CAS  Google Scholar 

  17. A. Rengasamy, and R.A. Johns, Determination of Km for oxygen of nitric oxide synthase isoforms, J Pharmacol Exp Ther 276(1), 30-33 (1996).

    PubMed  CAS  Google Scholar 

  18. D.D. Thomas, et al., Superoxide fluxes limit nitric oxide-induced signaling, J Biol Chem 281(36), 25984-25993 (2006).

    Article  PubMed  CAS  Google Scholar 

  19. C. Quijano, N. Romero, and R. Radi, Tyrosine nitration by superoxide and nitric oxide fluxes in biological systems: modeling the impact of superoxide dismutase and nitric oxide diffusion, Free Radic Biol Med 39(6), 728-741 (2005).

    Article  PubMed  CAS  Google Scholar 

  20. J.M. Robinson, and J.R. Lancaster, Jr., Hemoglobin-mediated, hypoxia-induced vasodilation via nitric oxide: mechanism(s) and physiologic versus pathophysiologic relevance, Am J Respir Cell Mol Biol 32(4), 257-261 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Buerk, D.G. (2009). Mathematical Modeling of The Interaction Between Oxygen, Nitric Oxide And Superoxide. In: Liss, P., Hansell, P., Bruley, D.F., Harrison, D.K. (eds) Oxygen Transport to Tissue XXX. Advances in Experimental Medicine and Biology, vol 645. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-85998-9_2

Download citation

Publish with us

Policies and ethics