Advertisement

Mini Sensing Chip for Point-of-Care Acute Myocardial Infarction Diagnosis Utilizing Micro-Electro-Mechanical System and Nano-Technology

  • Jianting Wang
  • Bin Honga
  • Junhai Kaib
  • Jungyoup Hanb
  • Zhiwei Zoub
  • Chong H. Ahnb
  • Kyung A. Kanga
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 645)

Abstract

A rapid and accurate diagnosis of acute myocardial infarction (AMI) is crucial for saving lives. For this purpose, we have been developing a rapid, automatic, point-ofcare, biosensing system for simultaneous four cardiac marker quantification. This system performs a fluorophore mediated immuno-sensing on optical fibers. To improve the sensitivity of the sensor, novel nanoparticle reagents enhancing fluorescence were implemented. Micro-electro-mechanical system (MEMS) technology was applied in the sensing chip development and automatic sensing operation was implemented to ensure a reliable and user-friendly assay. The resulting system is a point-of-care, automatic four cardiac marker sensing system with a 2 x 2.5cm sensing chip. An assay requires a 200 μ$L plasma sample and 15-minute assay time.

Keywords

Acute Myocardial Infarction Acute Myocardial Infarction Cardiac Marker Cyclic Olefin Copolymer Nanometal Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    American Heart Association (AHA), Heart disease and stroke statistics, 2007 updateGoogle Scholar
  2. 2.
    A. Wu, F. S. Apple, W. B. Gibler, R. L. Jesse, M. M. Warshaw, R. Valdes. National Academy of Clinical Biochemistry Standards of Laboratory Practice: recommendations for the use of cardiac markers in coronary artery diseases. Clin Chem 45:1104–21 (1999).PubMedGoogle Scholar
  3. 3.
    J. H. Pope, T. P. Aufderheide, R. Ruthazer, Missed diagnoses of acute cardiac ischemia in the emergency Missed diagnoses of acute cardiac ischemia in the emergency department. N Engl J Med 342: 1163–70 (2000).PubMedCrossRefGoogle Scholar
  4. 4.
    R. Bernard, E. Corday, H. Eliasch, Nomenclature and criteria for diagnosis of ischemic heart disease. Report of the Joint International Society and Federation of Cardiology/World Health Organization task force on standardization of clinical nomenclature. Circulation 59:607–9 (1979).Google Scholar
  5. 5.
    J. O. Spiker, K. A. Kang, W. Drohan, and D. F. Bruley, Protein C detection via fluorophore mediated immuno-optical biosensor. Advances in Experimental Medicine and Biology 428, 621-627. (1999)Google Scholar
  6. 6.
    L. Tang and K. A. Kang. Preliminary study of simultaneous multi-anticoagulant deficiency diagnosis by a fiber optic multi-analyte biosensor. Proceedings of the 31st IOSTT Annual Meeting, Aug. 16-20, 2003, Rochester, NY.Google Scholar
  7. 7.
    A. S. Maisel, P. Krishnaswamy, H. C. Herrmann, and P. A. McCullough, Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure, New Engl. J. Med. 347, 161-167 (2002).PubMedCrossRefGoogle Scholar
  8. 8.
    M. S. Sabatine , D. A. Morrow, C. P. Cannon, and E. Braunwald, Multimarker approach to risk stratification in non-ST elevation acute coronary syndromes: Simultaneous assessment of troponin I, c-reactive protein, and b-type natriuretic peptide, Circ. 105, 1760-1763 (2002).CrossRefGoogle Scholar
  9. 9.
    F. S. Apple, R. H. Christenson, R. Valdes, A. J. Andriak, K. Mascotti, and A. H.B. Wu, Simultaneous rapid measurement of whole blood myoglobin, creatine kinase MB, and cardiac troponin I by the triage cardiac panel for detection of myocardial infarction, Clin. Chem. 45(2), 199-205 (1999).PubMedGoogle Scholar
  10. 10.
    L. Tang, Multi-analyte, fiber-optic immuno-biosensing system for rapid disease diagnosis: model systems for anticoagulants and cardiac markers. Dissertation. Chemical Engineering, University of Louisville, Louisville, KY. (2005)Google Scholar
  11. 11.
    L. Tang and K. A. Kang, Preliminary study of simultaneous multi-anticoagulant deficiency diagnosis by a fiber optic multi-analyte biosensor. Advances in Experimental Medicine and Biology 566:303-309 (2006).CrossRefGoogle Scholar
  12. 12.
    L. Tang, Y. J. Ren, B. Hong, and K. A. Kang, A fluorophore-mediated, fiber-optic, multi-analyte, immunosensing system for rapid diagnosis and prognosis of cardiovascular diseases, J. Biomed. Optics 11, 021011 (2006).CrossRefGoogle Scholar
  13. 13.
    B. Hong and K. A. Kang, Biocompatible, nanogold-particle fluorescence enhancer for fluorophore mediated, optical immunosensor, Biosens. Bioelectron. 21(7), 1333-1338 (2006).PubMedCrossRefGoogle Scholar
  14. 14.
    K. A. Kang and B. Hong, Biocompatible nano-metal particle fluorescence enhancers, Crit. Rev. Eukar. Gene Expres. 16(1), 45-60 (2006).Google Scholar
  15. 15.
    Y. Sohn, J. H. Kai, C. H. Ahn, Protein array patterning on Cyclic Olefin Copolymer (COC) for disposable protein chip, Sensor Lett. 2, 171-174 (2005).CrossRefGoogle Scholar
  16. 16.
    B. Hong, J. H. Kai, Y. J. Ren, J. Y. Han, Z. W. Zou, C. H. Ahn, and K. A. Kang, Higly sensitive, rapid, reliable and automatic cardiovascular disease diagnosis with nanoparticle fluorescence enhancer and MEMS, Proceeding of the 34rd ISOTT annual meeting, August 12-17, Louisville, KY, USA, (in press)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jianting Wang
    • 1
  • Bin Honga
    • 1
  • Junhai Kaib
    • 2
  • Jungyoup Hanb
    • 2
  • Zhiwei Zoub
    • 2
  • Chong H. Ahnb
    • 2
  • Kyung A. Kanga
    • 1
  1. 1.Department of Chemical EngineeringUniversity of LouisvilleLouisville
  2. 2.Department of Electrical and Computer Engineering and Computer ScienceUniversity of CincinnatiCincinnati

Personalised recommendations