Carotid Body Sensory Discharge And Glomus Cell Hif-1α Are Regulated By A Common Oxygen Sensor

  • S. Lahiri
  • A. Roy
  • S. M. Baby
  • C. Di Giulio
  • D. F. Wilson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 645)


The carotid body responds to both acute and more prolonged periods of lowered oxygen pressure. In the acute response, the decrease in oxygen pressure is coupled to increased afferent neural activity while the latter involves, at least in part, increase in the hypoxia inducible transcription factor HIF-1α. In this paper, we summarize evidence that both the acute changes in neural activity and the longer term adaptive changes linked to HIF-1α induction share the same oxygen sensor, mitochondrial cytochrome c oxidase.


Oxygen Pressure Coronary Blood Flow Carotid Body Oxygen Sensor Mitochondrial Oxidative Phosphorylation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wilson DF, Roy A, and Lahiri S. Immediate and long-term responses of the carotid body to high altitude. High Alt Med Biol 6: 97-111, 2005.PubMedCrossRefGoogle Scholar
  2. 2.
    Baby SM, Roy A, Mokashi AM, and Lahiri S. Effects of hypoxia and intracellular iron chelation on hypoxia-inducible factor -1α and -1β in the rat carotid body and glomus cells. Histochem. Cell Biol. 120:343-352, (2003).PubMedCrossRefGoogle Scholar
  3. 3.
    Roy A, Denys V, Baby SM, Mokashi A, Kubin L, and Lahiri S. Activation of HIF-1α mRNA by hypoxia and iron chelator in isolated rat carotid body. Neurosci Lett 363: 229-232, 2004.PubMedCrossRefGoogle Scholar
  4. 4.
    Roy, A., Baby, S.M., Wilson, D.F., and Lahiri, S. Rat carotid body chemosensory discharge and glomus cell HIF-1a expression in vitro: Regulation by a common oxygen sensor. A.J.Physiol. –Reg. Integ. & Comp. Physiol.. 293(2): R829-36, 2007.Google Scholar
  5. 5.
    Matschinsky FM, Magnuson MA, Zelent D, Jetton TL, Doliba N, Han Y, Taub R, Grimsby J. The network of glucokinase-expressing cells in glucose homeostasis and the potential of glucokinase activators for diabetes therapy. Diabetes. 55(1):1-12, 2006. Review.PubMedCrossRefGoogle Scholar
  6. 6.
    Wilson DF, Mokashi A, Chugh D, Vinogradov S, Osanai S, and Lahiri S. The primary oxygen sensor of the cat carotid body is cytochrome a3 of the mitochondrial respiratory chain. FEBS Lett 351: 370-374, 1994.PubMedCrossRefGoogle Scholar
  7. 7.
    Iturriaga R, Rumsey WL, Mokashi A, Spergel D, Wilson DF, and Lahiri S. In vitro perfusedsuperfused cat carotid body for physiological and pharmacological studies. J Appl Physiol. 70:1393-400, 1991.PubMedGoogle Scholar
  8. 8.
    Castor, L.N. and Chance, B. Photochemical action spectra of carbon monoxide –inhibited respiration. J. Biol. Chem. 217: 453-465, 1955.PubMedGoogle Scholar
  9. 9.
    Warburg O. Uber die Wirkung des Kohlenoxyds auf den Stoffwechsel der Hefe. Biochem J 177: 471-486, 1926.Google Scholar
  10. 10.
    Warburg, O. and Negelein, E. Über die Einfluss der Wellenlänge auf die Verteilung des Atmungsferments. (Absorptionsspektrum des Atmungsferments) Biochem. Z. 193, 339-346, 1928.Google Scholar
  11. 11.
    Wilson DF. Identifying oxygen sensors by their photochemical action spectra. Methods in Enz 381:690-703, 2004.CrossRefGoogle Scholar
  12. 12.
    Mulligan E. and Lahiri S. Separation of carotid body chemoreceptor responses to O2 and CO2 by oligomycin and by antimycin A. Am J Physiol 242: C200-206, 1982.PubMedGoogle Scholar
  13. 13.
    Mulligan E. Lahiri S. Storey BT. Carotid body O2 chemoreception and mitochondrial oxidative phosphorylation. J. Appl. Physiol: Resp. Env. & Exercise Physiol. 51(2): 438-46, 1981.Google Scholar
  14. 14.
    Semenza GL. HIF-1: mediator of physiological and pathological responses to hypoxia. J Appl Physiol 88: 1474-1480, 2000.PubMedGoogle Scholar
  15. 15.
    Roy A, Li J, Baby SM, Mokashi A, Buerk DG, and Lahiri S. Effects of iron-chelators on ion channels and HIF-1α in the carotid body. Respir Physiol & Neurobiol 141: 115-123, 2004.CrossRefGoogle Scholar
  16. 16.
    Rumsey, WL, Iturriaga, R, Spergel, D, Lahiri, S, and Wilson, DF. Optical measurements of the dependence of chemoreception on oxygen pressure in the cat carotid body. Amer. J. Physiol. 261:C614-C622, 1991.PubMedGoogle Scholar
  17. 17.
    Allela, A. Williams FL, Bolene-Williams, C, and Katz, LN Interrelation between cardiac oxygen consumption and coronary blood flow. Am. J. Physiol. 183: 570-582, 1955.Google Scholar
  18. 18.
    Nuutinen EM, Nishiki K, Erecinska M, and Wilson DF. Role of mitochondrial oxidative phosphorylation in regulation of coronary blood flow. Am J Physiol 243: H159-H169, 1982.PubMedGoogle Scholar
  19. 19.
    Nuutinen EM, Nelson D, Wilson DF, and Erecinska M. Regulation of coronary blood flow: effects of 2,4-dinitrophenol and theophylline. Amer J Physiol 244: H396-H405, 1983.PubMedGoogle Scholar
  20. 20.
    Lahiri S, Mokashi E, Mulligan E, and Nishino T. Comparison of aortic and carotid chemoreceptor responses to hypercapnia and hypoxia. J Appl Physiol 51(1): 55-61, 1981.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • S. Lahiri
    • 1
  • A. Roy
    • 1
  • S. M. Baby
    • 1
  • C. Di Giulio
    • 2
  • D. F. Wilson
    • 3
  1. 1.Department of PhysiologyUniversity of PennsylvaniaPhiladelphia
  2. 2.Department of Basic and Applied Medical SciencesUniversity of ChietiItaly
  3. 3.Department of Biochemistry and BiophysicsUniversity of PennsylvaniaPhiladelphia

Personalised recommendations