Renal Protection Strategies

  • Mark Stafford-Smith
  • Chad Hughes
  • Andrew D. Shaw
  • Madhav Swaminathan


The well-known quote from the renal physiologist Dr. Homer Smith as he proposed that “…the composition of the blood is determined not by what the mouth ingests but by what the kidneys keep..”1 highlights not only the kidneys’ domain of influence, but why even the smallest functional perturbations can have widespread effects. The kidney plays a central role in homeostasis, including keeping extracellular composition and fluid volume constant, while excreting toxins and metabolic waste in the urine. Acute kidney injury (AKI) is a major complication of aortic surgery and highly associated with poor outcome.


Acute Kidney Injury Atrial Natriuretic Peptide Aortic Surgery Cardiac Surgery Patient Distal Convoluted Tubule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Smith HW. Lectures on the Kidney. Lawrence: University Extension Division, University of Kansas; 1943.Google Scholar
  2. 2.
    Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8(4):R204–212.PubMedCrossRefGoogle Scholar
  3. 3.
    Mora-Mangano C, Diamondstone LS, Ramsay JG, Aggarwal A, Herskowitz A, Mangano DT. Renal dysfunction after myocardial revascularization: risk factors, adverse outcomes, and hospital resource utilization. The Multicenter Study of Perioperative Ischemia Research Group. Ann Intern Med. 1998;128(3):194–203.Google Scholar
  4. 4.
    Sladen RN, Endo E, Harrison T. Two-hour versus 22-hour creatinine clearance in critically ill patients. Anesthesiology. 1987;67(6):1013–1016.PubMedCrossRefGoogle Scholar
  5. 5.
    Alpert RA, Roizen MF, Hamilton WK, et al. Intraoperative urinary output does not predict postoperative renal function in patients undergoing abdominal aortic revascularization. Surgery. 1984;95(6):707–711.PubMedGoogle Scholar
  6. 6.
    Conlon PJ, Stafford-Smith M, White WD, et al. Acute renal failure following cardiac surgery. Nephrol Dial Transplant. 1999;14(5):1158–1162.PubMedCrossRefGoogle Scholar
  7. 7.
    Bloor GK, Welsh KR, Goodall S, Shah MV. Comparison of predicted with measured creatinine clearance in cardiac surgical patients. J Cardiothorac Vasc Anesth. 1996;10(7):899–902.PubMedCrossRefGoogle Scholar
  8. 8.
    Gowans EM, Fraser CG. Biological variation of serum and urine creatinine and creatinine clearance: ramifications for interpretation of results and patient care [see comments]. Ann Clin Biochem. 1988;25(Pt 3):259–263.PubMedGoogle Scholar
  9. 9.
    Morgan DB, Dillon S, Payne RB. The assessment of glomerular function: creatinine clearance or plasma creatinine? Postgrad Med J. 1978;54(631):302–310.PubMedCrossRefGoogle Scholar
  10. 10.
    Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41.PubMedCrossRefGoogle Scholar
  11. 11.
    Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130(6):461–470.PubMedGoogle Scholar
  12. 12.
    Ferguson TB Jr, Dziuban SW Jr, Edwards FH, et al. The STS National Database: current changes and challenges for the new millennium. Committee to Establish a National Database in Cardiothoracic Surgery, The Society of Thoracic Surgeons. Ann Thorac Surg. 2000;69(3):680–691.PubMedCrossRefGoogle Scholar
  13. 13.
    Barrett BJ, Parfrey PS. Prevention of nephrotoxicity induced by radiocontrast agents. N Engl J Med. 1994;331(21):1449–1450.PubMedCrossRefGoogle Scholar
  14. 14.
    Stafford-Smith M. Perioperative renal dysfunction: implications and strategies for protection. In: Newman MF, ed. Perioperative Organ Protection. Baltimore: Lippincott Williams and Wilkins; 2003:89–124.Google Scholar
  15. 15.
    Porter GA. Contrast-associated nephropathy: presentation, pathophysiology and management. Miner Electrolyte Metab. 1994;20(4):232–243.PubMedGoogle Scholar
  16. 16.
    Stafford-Smith M, Podgoreanu M, Swaminathan M, et al. Association of genetic polymorphisms with risk of renal injury after coronary artery bypass graft surgery. Am J Kidney Dis. 2005;45(3):519–530.PubMedCrossRefGoogle Scholar
  17. 17.
    Davila-Roman VG, Kouchoukos NT, Schechtman KB, Barzilai B. Atherosclerosis of the ascending aorta is a predictor of renal dysfunction after cardiac operations. J Thorac Cardiovasc Surg. 1999;117(1):111–116.PubMedCrossRefGoogle Scholar
  18. 18.
    Sreeram GM, Grocott HP, White WD, Newman MF, Stafford-Smith M. Transcranial Doppler emboli count predicts rise in creatinine after coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth. 2004;18(5):548–551.PubMedCrossRefGoogle Scholar
  19. 19.
    Thurlbeck W, Castleman B. Atheromatous emboli to the kidneys after aortic surgery. N Engl J Med. 1957;257:442–447.PubMedCrossRefGoogle Scholar
  20. 20.
    Reichenspurner H, Navia JA, Berry G, et al. Particulate emboli capture by an intra-aortic filter device during cardiac surgery. J Thorac Cardiovasc Surg. 2000;119(2):233–241.PubMedCrossRefGoogle Scholar
  21. 21.
    Barbut D, Yao FS, Lo YW, et al. Determination of size of aortic emboli and embolic load during coronary artery bypass grafting. Ann Thorac Surg. 1997;63(5):1262–1267.PubMedGoogle Scholar
  22. 22.
    Greenberg RK, Chuter TA, Lawrence-Brown M, Haulon S, Nolte L. Analysis of renal function after aneurysm repair with a device using suprarenal fixation (Zenith AAA Endovascular Graft) in contrast to open surgical repair. J Vasc Surg. 2004;39(6):1219–1228.PubMedCrossRefGoogle Scholar
  23. 23.
    Schermerhorn ML, O’Malley AJ, Jhaveri A, Cotterill P, Pomposelli F, Landon BE. Endovascular vs. open repair of abdominal aortic aneurysms in the Medicare population. N Engl J Med. 2008;358(5):464–474.PubMedCrossRefGoogle Scholar
  24. 24.
    Murphy EH, Beck AW, Clagett GP, DiMaio JM, Jessen ME, Arko FR. Combined aortic debranching and thoracic endovascular aneurysm repair (TEVAR) effective but at a cost. Arch Surg. 2009;144(3):222–227.PubMedCrossRefGoogle Scholar
  25. 25.
    Chiesa R, Tshomba Y, Melissano G, Logaldo D. Is hybrid procedure the best treatment option for thoraco-abdominal aortic aneurysm? Eur J Vasc Endovasc Surg. 2009;38(1):26–34.PubMedCrossRefGoogle Scholar
  26. 26.
    Garwood S, Mathew J, Hines R. Renal function and cardiopulmonary bypass: does time since catheterization impact renal performance? Anesthesiology. 1997;87:A90.CrossRefGoogle Scholar
  27. 27.
    Provenchere S, Plantefeve G, Hufnagel G, et al. Renal dysfunction after cardiac surgery with normothermic cardiopulmonary bypass: incidence, risk factors, and effect on clinical outcome. Anesth Analg. 2003;96(5):1258–1264.PubMedCrossRefGoogle Scholar
  28. 28.
    Atkins JL. Effect of sodium bicarbonate preloading on ischemic renal failure. Nephron. 1986;44(1):70–74.PubMedCrossRefGoogle Scholar
  29. 29.
    Merten GJ, Burgess WP, Gray LV, et al. Prevention of contrast-induced nephropathy with sodium bicarbonate: a randomized controlled trial. JAMA. 2004;291(19):2328–2334.PubMedCrossRefGoogle Scholar
  30. 30.
    Haase M, Haase-Fielitz A, Bellomo R, et al. Sodium bicarbonate to prevent increases in serum creatinine after cardiac surgery: a pilot double-blind, randomized controlled trial. Crit Care Med. 2009;37(1):39–47.PubMedCrossRefGoogle Scholar
  31. 31.
    Corwin HL, Schreiber MJ, Fang LS. Low fractional excretion of sodium: occurrence with hemoglobinuric- and myoglobinuric-induced acute renal failure. Arch Intern Med. 1984;144(5):981–982.PubMedCrossRefGoogle Scholar
  32. 32.
    Shaw AD, Stafford-Smith M, White WD, et al. The effect of aprotinin on outcome after coronary-artery bypass grafting. N Engl J Med. 2008;358(8):784–793.PubMedCrossRefGoogle Scholar
  33. 33.
    Stafford-Smith M, Phillips-Bute B, Reddan DN, Milano C, Newman MF, Winn M. The association of postoperative peak and fractional change in serum creatinine with mortality after coronary bypass surgery. Anesthesiology. 2000;93:A240.Google Scholar
  34. 34.
    Chertow GM, Lazarus JM, Christiansen CL, et al. Preoperative renal risk stratification. Circulation. 1997;95(4):878–884.PubMedGoogle Scholar
  35. 35.
    Zanardo G, Michielon P, Paccagnella A, et al. Acute renal failure in the patient undergoing cardiac operation: prevalence, mortality rate, and main risk factors. J Thorac Cardiovasc Surg. 1994;107(6):1489–1495.PubMedGoogle Scholar
  36. 36.
    Yeh T, Brackney E, Hall D, Ellison R. Renal complications of open-heart surgery: predisposing factors, prevention and management. J Thorac Cardiovasc Surg. 1964;47:79–95.PubMedGoogle Scholar
  37. 37.
    Porter GA, Kloster FE, Herr RJ, Starr A, Griswold HE, Kimsey J. Renal complications associated with valve replacement surgery. J Thorac Cardiovasc Surg. 1967;53(1):145–152.PubMedGoogle Scholar
  38. 38.
    McLeish KR, Luft FC, Kleit SA. Factors affecting prognosis in acute renal failure following cardiac operations. Surg Gynecol Obstet. 1977;145(1):28–32.PubMedGoogle Scholar
  39. 39.
    Mangos GJ, Brown MA, Chan WY, Horton D, Trew P, Whitworth JA. Acute renal failure following cardiac surgery: incidence, outcomes and risk factors. Aust N Z J Med. 1995;25(4):284–289.PubMedGoogle Scholar
  40. 40.
    Llopart T, Lombardi R, Forselledo M, Andrade R. Acute renal failure in open heart surgery. Ren Fail. 1997;19(2):319–323.PubMedCrossRefGoogle Scholar
  41. 41.
    Hilberman M, Myers BD, Carrie BJ, Derby G, Jamison RL, Stinson EB. Acute renal failure following cardiac surgery. J Thorac Cardiovasc Surg. 1979;77(6):880–888.PubMedGoogle Scholar
  42. 42.
    Heikkinen L, Harjula A, Merikallio E. Acute renal failure related to open-heart surgery. Ann Chir Gynaecol. 1985;74(5):203–209.PubMedGoogle Scholar
  43. 43.
    Gailiunas P Jr, Chawla R, Lazarus JM, Cohn L, Sanders J, Merrill JP. Acute renal failure following cardiac operations. J Thorac Cardiovasc Surg. 1980;79(2):241–243.PubMedGoogle Scholar
  44. 44.
    Doberneck RC, Reiser MP, Lillehei CW. Acute renal failure after open-heart surgery utilizing extracorporeal circulation and total body perfusion. J Thorac Cardiovasc Surg. 1962;43:441–452.PubMedGoogle Scholar
  45. 45.
    Corwin HL, Sprague SM, DeLaria GA, Norusis MJ. Acute renal failure associated with cardiac operations: a case-control study. J Thorac Cardiovasc Surg. 1989;98(6):1107–1112.PubMedGoogle Scholar
  46. 46.
    Bhat JG, Gluck MC, Lowenstein J, Baldwin DS. Renal failure after open heart surgery. Ann Intern Med. 1976;84(6):677–682.PubMedGoogle Scholar
  47. 47.
    Andersson LG, Ekroth R, Bratteby LE, Hallhagen S, Wesslen O. Acute renal failure after coronary surgery–a study of incidence and risk factors in 2009 consecutive patients. Thorac Cardiovasc Surg. 1993;41(4):237–241.PubMedCrossRefGoogle Scholar
  48. 48.
    Abel RM, Buckley MJ, Austen WG, Barnett GO, Beck CH Jr, Fischer JE. Etiology, incidence, and prognosis of renal failure following cardiac operations: results of a prospective analysis of 500 consecutive patients. J Thorac Cardiovasc Surg. 1976;71(3):323–333.PubMedGoogle Scholar
  49. 49.
    Mimran A, Ribstein J. Angiotensin converting enzyme inhibitors and renal function. J Hypertens Suppl. 1989;7(5):S3–9.PubMedGoogle Scholar
  50. 50.
    Kamper AL, Nielsen AH, Baekgaard N, Just S. Renal graft failure after addition of an angiotensin II receptor antagonist to an angiotensin-converting enzyme inhibitor: unmasking of an unknown iliac artery stenosis. J Renin Angiotensin Aldosterone Syst. 2002;3(2):135–137.PubMedCrossRefGoogle Scholar
  51. 51.
    Cittanova ML, Zubicki A, Savu C, et al. The chronic inhibition of angiotensin-converting enzyme impairs postoperative renal function. Anesth Analg. 2001;93(5):1111–1115.PubMedCrossRefGoogle Scholar
  52. 52.
    Weightman WM, Gibbs NM, Sheminant MR, Whitford EG, Mahon BD, Newman MA. Drug therapy before coronary artery surgery: nitrates are independent predictors of mortality and beta-adrenergic blockers predict survival. Anesth Analg. 1999;88(2):286–291.PubMedCrossRefGoogle Scholar
  53. 53.
    Charlson M, Krieger KH, Peterson JC, Hayes J, Isom OW. Predictors and outcomes of cardiac complications following elective coronary bypass grafting. Proc Assoc Am Physicians. 1999;111(6):622–632.PubMedCrossRefGoogle Scholar
  54. 54.
    Cittanova ML, Leblanc I, Legendre C, Mouquet C, Riou B, Coriat P. Effect of hydroxyethylstarch in brain-dead kidney donors on renal function in kidney-transplant recipients. Lancet. 1996;348(9042):1620–1622.PubMedCrossRefGoogle Scholar
  55. 55.
    Peron S, Mouthon L, Guettier C, Brechignac S, Cohen P, Guillevin L. Hydroxyethyl starch-induced renal insufficiency after plasma exchange in a patient with polymyositis and liver cirrhosis. Clin Nephrol. 2001;55(5):408–411.PubMedGoogle Scholar
  56. 56.
    Winkelmayer WC, Glynn RJ, Levin R, Avorn J. Hydroxyethyl starch and change in renal function in patients undergoing coronary artery bypass graft surgery. Kidney Int. 2003;64(3):1046–1049.PubMedCrossRefGoogle Scholar
  57. 57.
    De Labarthe A, Jacobs F, Blot F, Glotz D. Acute renal failure secondary to hydroxyethylstarch administration in a surgical patient. Am J Med. 2001;111(5):417–418.PubMedCrossRefGoogle Scholar
  58. 58.
    Schortgen F, Lacherade JC, Bruneel F, et al. Effects of hydroxyethylstarch and gelatin on renal function in severe sepsis: a multicentre randomised study. Lancet. 2001;357(9260):911–916.PubMedCrossRefGoogle Scholar
  59. 59.
    Kumle B, Boldt J, Piper S, Schmidt C, Suttner S, Salopek S. The influence of different intravascular volume replacement regimens on renal function in the elderly. Anesth Analg. 1999;89(5):1124–1130.PubMedCrossRefGoogle Scholar
  60. 60.
    Wilkes NJ, Woolf R, Mutch M, et al. The effects of balanced versus saline-based hetastarch and crystalloid solutions on acid-base and electrolyte status and gastric mucosal perfusion in elderly surgical patients. Anesth Analg. 2001;93(4):811–816.PubMedCrossRefGoogle Scholar
  61. 61.
    Parekh N. Hyperchloremic acidosis. Anesth Analg. 2002;95:1821.PubMedCrossRefGoogle Scholar
  62. 62.
    Wilcox C. Regulation of renal blood flow by plasma chloride. J Clin Invest. 1983;71:726–735.PubMedCrossRefGoogle Scholar
  63. 63.
    Hansen PB, Jensen BL, Skott O. Chloride regulates afferent arteriolar contraction in response to depolarization. Hypertension. 1998;32(6):1066–1070.PubMedGoogle Scholar
  64. 64.
    Andersson LG, Bratteby LE, Ekroth R, et al. Renal function during cardiopulmonary bypass: influence of pump flow and systemic blood pressure. Eur J Cardiothorac Surg. 1994;8(11):597–602.PubMedCrossRefGoogle Scholar
  65. 65.
    Reves JG, Karp RB, Buttner EE, et al. Neuronal and adrenomedullary catecholamine release in response to cardiopulmonary bypass in man. Circulation. 1982;66(1):49–55.PubMedGoogle Scholar
  66. 66.
    Laffey J, Boylan J, Cheng D. The systemic inflammatory response to cardiac surgery: implications for the anesthesiologist. Anesthesiology. 2002;97:215–252.PubMedCrossRefGoogle Scholar
  67. 67.
    Fischer UM, Weissenberger WK, Warters RD, Geissler HJ, Allen SJ, Mehlhorn U. Impact of cardiopulmonary bypass management on postcardiac surgery renal function. Perfusion. 2002;17(6):401–406.PubMedCrossRefGoogle Scholar
  68. 68.
    Urzua J, Troncoso S, Bugedo G, et al. Renal ­function and cardiopulmonary bypass: effect of perfusion pressure. J Cardiothorac Vasc Anesth. 1992;6(3):299–303.PubMedCrossRefGoogle Scholar
  69. 69.
    Swaminathan M, Knauth K, Phillips-Bute B, Smith P, Stafford-Smith M. Lowest CPB Hematocrit is inversely associated with creatinine rise after coronary bypass surgery. Anesth Analg. 2002;94:S70.Google Scholar
  70. 70.
    Conlon PJ, Crowley J, Stack R, et al. Renal artery stenosis is not associated with the development of acute renal failure following coronary artery bypass grafting. Ren Fail. 2005;27(1):81–86.PubMedGoogle Scholar
  71. 71.
    DeFoe G, Ross C, Olmstead E, et al. Group NNECDS: lowest hematocrit on bypass and adverse outcomes associated with coronary artery bypass grafting. Ann Thorac Surg. 2001;71:769–776.PubMedCrossRefGoogle Scholar
  72. 72.
    Fang WC, Helm RE, Krieger KH, et al. Impact of minimum hematocrit during cardiopulmonary bypass on mortality in patients undergoing coronary artery surgery. Circulation. 1997;96(9 Suppl):II-194–199.Google Scholar
  73. 73.
    Ranucci M, Pavesi M, Mazza E, et al. Risk factors for renal dysfunction after coronary surgery: the role of cardiopulmonary bypass technique. Perfusion. 1994;9(5):319–326.PubMedCrossRefGoogle Scholar
  74. 74.
    Swaminathan M, Phillips-Bute BG, Conlon PJ, Newman S, Smith PK, Stafford-Smith M. The association of lowest hematocrit during cardiopulmonary bypass with acute renal injury after coronary bypass surgery. Ann Thorac Surg. 2003;76(3):784–791.PubMedCrossRefGoogle Scholar
  75. 75.
    Karkouti K, Beattie WS, Wijeysundera DN, et al. Hemodilution during cardiopulmonary bypass is an independent risk factor for acute renal failure in adult cardiac surgery. J Thorac Cardiovasc Surg. 2005;129(2):391–400.PubMedCrossRefGoogle Scholar
  76. 76.
    Habib RH, Zacharias A, Schwann TA, et al. Role of hemodilutional anemia and transfusion during cardiopulmonary bypass in renal injury after coronary revascularization: implications on operative outcome. Crit Care Med. 2005;33(8):1749–1756.PubMedCrossRefGoogle Scholar
  77. 77.
    Kincaid EH, Ashburn DA, Hoyle JR, Reichert MG, Hammon JW, Kon ND. Does the combination of aprotinin and angiotensin-converting enzyme inhibitor cause renal failure after cardiac surgery? Ann Thorac Surg. 2005;80(4):1388–1393.PubMedCrossRefGoogle Scholar
  78. 78.
    Ip-Yam PC, Murphy S, Baines M, Fox MA, Desmond MJ, Innes PA. Renal function and proteinuria after cardiopulmonary bypass: the effects of temperature and mannitol. Anesth Analg. 1994;78(5):842–847.PubMedCrossRefGoogle Scholar
  79. 79.
    Regragui IA, Izzat MB, Birdi I, Lapsley M, Bryan AJ, Angelini GD. Cardiopulmonary bypass perfusion temperature does not influence perioperative renal function. Ann Thorac Surg. 1995;60(1):160–164.PubMedGoogle Scholar
  80. 80.
    Swaminathan M, East C, Phillips-Bute B, et al. Report of a substudy on warm versus cold cardiopulmonary bypass: changes in creatinine clearance. Ann Thorac Surg. 2001;72(5):1603–1609.PubMedCrossRefGoogle Scholar
  81. 81.
    Bakirtas H, Eroglu M, Naldoken S, Akbulut Z, Tekdogan UY. Nephron-sparing surgery: the effect of surface cooling and temporary renal artery occlusion on renal function. Urol Int. 2009;82(1):24–27.PubMedCrossRefGoogle Scholar
  82. 82.
    Van den Berghe G, Wouters P, Weekers F, et al. Intensive insulin therapy in the critically ill patients. N Engl J Med. 2001;345(19):1359–1367.PubMedCrossRefGoogle Scholar
  83. 83.
    Gandhi GY, Nuttall GA, Abel MD, et al. Intensive intraoperative insulin therapy versus conventional ­glucose management during cardiac surgery: a randomized trial. Ann Intern Med. 2007;146(4):233–243.PubMedGoogle Scholar
  84. 84.
    Burchardi H, Kaczmarczyk G. The effect of anaesthesia on renal function. Eur J Anaesthesiol. 1994;11(3):163–168.PubMedGoogle Scholar
  85. 85.
    Sladen RN, Landry D. Renal blood flow regulation, autoregulation, and vasomotor nephropathy. Anesthesiol Clin N Am. 2000;18(4):791–807. ix.CrossRefGoogle Scholar
  86. 86.
    Page US, Washburn T. Using tracking data to find complications that physicians miss: the case of renal failure in cardiac surgery. Jt Comm J Qual Improv. 1997;23(10):511–520.PubMedGoogle Scholar
  87. 87.
    Bellomo R, Chapman M, Finfer S, Hickling K, Myburgh J. Low-dose dopamine in patients with early renal dysfunction: a placebo- controlled randomised trial. Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group. Lancet. 2000;356(9248):2139–2143.PubMedCrossRefGoogle Scholar
  88. 88.
    Marik PE. Low-dose dopamine: a systematic review. Intensive Care Med. 2002;28(7):877–883.PubMedCrossRefGoogle Scholar
  89. 89.
    Kellum JA, Decker JM. Use of dopamine in acute renal failure: a meta-analysis. Crit Care Med. 2001;29(8):1526–1531.PubMedCrossRefGoogle Scholar
  90. 90.
    Prins I, Plotz FB, Uiterwaal CS, van Vught HJ. ­Low-dose dopamine in neonatal and pediatric intensive care: a systematic review. Intensive Care Med. 2001;27(1):206–210.PubMedCrossRefGoogle Scholar
  91. 91.
    Friedrich JO, Adhikari N, Herridge MS, Beyene J. Meta-analysis: low-dose dopamine increases urine output but does not prevent renal dysfunction or death. Ann Intern Med. 2005;142(7):510–524.PubMedGoogle Scholar
  92. 92.
    Bove T, Landoni G, Grazia Calabro M, et al. Renoprotective action of Fenoldopam in high-risk patients undergoing cardiac surgery: a prospective, double-blind, randomized clinical trial. Circulation. 2005;111(24):3230–3235.PubMedCrossRefGoogle Scholar
  93. 93.
    Caimmi PP, Pagani L, Micalizzi E, et al. Fenoldopam for renal protection in patients undergoing cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2003;17(4):491–494.PubMedCrossRefGoogle Scholar
  94. 94.
    Tumlin J, Finckle K, Murray P, Shaw A. Dopamine receptor 1 agonists in early acute tubular necrosis: a prospective, randomized, double blind, placebo-controlled trial of fenoldopam mesylate. J Am Soc Nephrol. 2003;14:PUB001.Google Scholar
  95. 95.
    Tumlin JA, Finkel KW, Murray PT, Samuels J, Cotsonis G, Shaw AD. Fenoldopam mesylate in early acute tubular necrosis: a randomized, double-blind, placebo-controlled clinical trial. Am J Kidney Dis. 2005;46(1):26–34.PubMedCrossRefGoogle Scholar
  96. 96.
    Halpenny M, Rushe C, Breen P, Cunningham AJ, Boucher-Hayes D, Shorten GD. The effects of fenoldopam on renal function in patients undergoing elective aortic surgery. Eur J Anaesthesiol. 2002;19(1):32–39.PubMedGoogle Scholar
  97. 97.
    Landoni G, Biondi-Zoccai GG, Marino G, et al. Fenoldopam reduces the need for renal replacement therapy and in-hospital death in cardiovascular surgery: a meta-analysis. J Cardiothorac Vasc Anesth. 2008;22(1):27–33.PubMedCrossRefGoogle Scholar
  98. 98.
    Renton MC, Snowden CP. Dopexamine and its role in the protection of hepatosplanchnic and renal perfusion in high-risk surgical and critically ill patients. Br J Anaesth. 2005;94(4):459–467.PubMedCrossRefGoogle Scholar
  99. 99.
    Albright RC Jr. Acute renal failure: a practical update. Mayo Clin Proc. 2001;76(1):67–74.PubMedCrossRefGoogle Scholar
  100. 100.
    Hager B, Betschart M, Krapf R. Effect of postoperative intravenous loop diuretic on renal function after major surgery. Schweiz Med Wochenschr. 1996;126(16):666–673.PubMedGoogle Scholar
  101. 101.
    Shilliday IR, Quinn KJ, Allison ME. Loop diuretics in the management of acute renal failure: a prospective, double-blind, placebo-controlled, randomized study. Nephrol Dial Transplant. 1997;12(12):2592–2596.PubMedCrossRefGoogle Scholar
  102. 102.
    Nuutinen L, Hollmen A. The effect of prophylactic use of furosemide on renal function during open heart surgery. Ann Chir Gynaecol. 1976;65(4):258–266.PubMedGoogle Scholar
  103. 103.
    Lassnigg A, Donner E, Grubhofer G, Presterl E, Druml W, Hiesmayr M. Lack of renoprotective effects of dopamine and furosemide during cardiac surgery. J Am Soc Nephrol. 2000;11(1):97–104.PubMedGoogle Scholar
  104. 104.
    Solomon R, Werner C, Mann D, D’Elia J, Silva P. Effects of saline, mannitol, and furosemide to ­prevent acute decreases in renal function induced by ­radiocontrast agents. N Engl J Med. 1994;331(21):1416-20. 331:1416–1420.PubMedCrossRefGoogle Scholar
  105. 105.
    Myers BD, Miller DC, Mehigan JT, et al. Nature of the renal injury following total renal ischemia in man. J Clin Invest. 1984;73(2):329–341.PubMedCrossRefGoogle Scholar
  106. 106.
    Carcoana OV, Mathew JP, Davis E, et al. Mannitol and dopamine in patients undergoing cardiopulmonary bypass: a randomized clinical trial. Anesth Analg. 2003;97(5):1222–1229.PubMedCrossRefGoogle Scholar
  107. 107.
    Visweswaran P, Massin EK, Dubose TD Jr. Mannitol-induced acute renal failure. J Am Soc Nephrol. 1997;8(6):1028–1033.PubMedGoogle Scholar
  108. 108.
    Joffy S, Rosner MH. Natriuretic peptides in ESRD. Am J Kidney Dis. 2005;46(1):1–10.PubMedCrossRefGoogle Scholar
  109. 109.
    Deegan PM, Ryan MP, Basinger MA, Jones MM, Hande KR. Protection from cisplatin nephrotoxicity by A68828, an atrial natriuretic peptide. Ren Fail. 1995;17(2):117–123.PubMedCrossRefGoogle Scholar
  110. 110.
    Allgren RL, Marbury TC, Rahman SN, et al. Anaritide in acute tubular necrosis. Auriculin Anaritide Acute Renal Failure Study Group. N Engl J Med. 1997;336(12):828–834.PubMedCrossRefGoogle Scholar
  111. 111.
    Lewis J, Salem MM, Chertow GM, et al. Atrial natriuretic factor in oliguric acute renal failure. Anaritide Acute Renal Failure Study Group. Am J Kidney Dis. 2000;36(4):767–774.PubMedCrossRefGoogle Scholar
  112. 112.
    Meyer M, Pfarr E, Schirmer G, et al. Therapeutic use of the natriuretic peptide ularitide in acute renal failure. Ren Fail. 1999;21(1):85–100.PubMedCrossRefGoogle Scholar
  113. 113.
    Sackner-Bernstein JD, Skopicki HA, Aaronson KD. Risk of worsening renal function with nesiritide in patients with acutely decompensated heart failure. Circulation. 2005;111(12):1487–1491.PubMedCrossRefGoogle Scholar
  114. 114.
    Teerlink JR, Massie BM. Nesiritide and worsening of renal function: the emperor’s new clothes? Circulation. 2005;111(12):1459–1461.PubMedCrossRefGoogle Scholar
  115. 115.
    Mentzer RM Jr, Oz MC, Sladen RN, et al. Effects of perioperative nesiritide in patients with left ventricular dysfunction undergoing cardiac surgery: the NAPA trial. J Am Coll Cardiol. 2007;49(6):716–726.PubMedCrossRefGoogle Scholar
  116. 116.
    Chen HH, Sundt TM, Cook DJ, Heublein DM, Burnett JC Jr. Low dose nesiritide and the preservation of renal function in patients with renal dysfunction undergoing cardiopulmonary-bypass surgery: a double-blind placebo-controlled pilot study. Circulation. 2007;116(11 Suppl):I-134–138.CrossRefGoogle Scholar
  117. 117.
    Hoffmann U, Fischereder M, Kruger B, Drobnik W, Kramer BK. The value of N-acetylcysteine in the prevention of radiocontrast agent-induced ­nephropathy seems questionable. J Am Soc Nephrol. 2004;15(2):407–410.PubMedCrossRefGoogle Scholar
  118. 118.
    Kshirsagar AV, Poole C, Mottl A, et al. N-acetylcysteine for the prevention of radiocontrast induced nephropathy: a meta-analysis of prospective controlled trials. J Am Soc Nephrol. 2004;15(3):761–769.PubMedCrossRefGoogle Scholar
  119. 119.
    Pannu N, Manns B, Lee HH, Tonelli M. Systematic review of the impact of N-acetylcysteine n contrast nephropathy. Kidney Int. 2004;65(4):1366–1374.PubMedCrossRefGoogle Scholar
  120. 120.
    Alonso A, Lau J, Jaber BL, Weintraub A, Sarnak MJ. Prevention of radiocontrast nephropathy with N-acetylcysteine in patients with chronic kidney disease: a meta-analysis of randomized, controlled trials. Am J Kidney Dis. 2004;43(1):1–9.PubMedCrossRefGoogle Scholar
  121. 121.
    Kretzschmar M, Klein U, Palutke M, Schirrmeister W. Reduction of ischemia-reperfusion syndrome after abdominal aortic aneurysmectomy by N-acetylcysteine but not mannitol. Acta Anaesthesiol Scand. 1996;40(6):657–664.PubMedCrossRefGoogle Scholar
  122. 122.
    Cote G, Denault A, Belisle S, Martineau R, Perrault L. N-acetylcysteine in the preservation of renal function in patients undergoing cardiac surgery. ASA Annual Meeting Abstracts. 2003;99(3A):A420.Google Scholar
  123. 123.
    Burns KE, Chu MW, Novick RJ, et al. Perioperative N-acetylcysteine to prevent renal dysfunction in high-risk patients undergoing cabg surgery: a randomized controlled trial. JAMA. 2005;294(3):342–350.PubMedCrossRefGoogle Scholar
  124. 124.
    Kulka PJ, Tryba M, Zenz M. Preoperative alpha2-adrenergic receptor agonists prevent the deterioration of renal function after cardiac surgery: results of a randomized, controlled trial. Crit Care Med. 1996;24(6):947–952.PubMedCrossRefGoogle Scholar
  125. 125.
    Wijeysundera DN, Naik JS, Beattie WS. Alpha-2 adrenergic agonists to prevent perioperative cardiovascular complications: a meta-analysis. Am J Med. 2003;114(9):742–752.PubMedCrossRefGoogle Scholar
  126. 126.
    Wijeysundera DN, Beattie WS, Rao V, Karski J. Calcium antagonists reduce cardiovascular complications after cardiac surgery: a meta-analysis. J Am Coll Cardiol. 2003;41(9):1496–1505.PubMedCrossRefGoogle Scholar
  127. 127.
    Bookstein JJ, Clark RL. Renal microvascular disease: angiographic-microangiographic correlates. In: HL A, ed. Library of Radiology. 1st ed. Boston: Little, Brown and Company; 1980.Google Scholar
  128. 128.
    Stafford-Smith M, Patel UD, Phillips-Bute BG, Shaw AD, Swaminathan M. Acute kidney injury and chronic kidney disease after cardiac surgery. Adv Chronic Kidney Dis. 2008;15:257–277.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Mark Stafford-Smith
    • 1
  • Chad Hughes
  • Andrew D. Shaw
  • Madhav Swaminathan
  1. 1.Department of AnesthesiologyDuke University Medical CenterDurhamUSA

Personalised recommendations