Skip to main content

Genetics and Diabetic Retinopathy

  • Chapter
  • First Online:
Diabetic Retinopathy

Abstract

Diabetic retinopathy (DR) is the leading cause of new cases of blindness for people between 20 and 64 years of age in the United States. While glycemic control is the chief risk factor for development and progression of diabetic retinopathy, there is increasing evidence for heritable risk factors. An increasing number of genetic linkage studies have uncovered the role that several genes have in the development and progression of DR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Damji KF, Allingham RR. Molecular genetics is revolutionizing our understanding of ophthalmic disease. Am J Ophthalmol. 1997;124:530–543.

    CAS  PubMed  Google Scholar 

  2. Snieder H, Sawtell PA, Ross L, Walker J, Spector TD, Leslie RDG. HbA1c levels are genetically determined even in type 1 diabetes: evidence from healthy and diabetic twins. Diabetes. 2001;50:2858–2863.

    Article  CAS  PubMed  Google Scholar 

  3. Hallman DM, Huber JC, Gonzalez VH, Klein BE, Klein R, Hanis CL. Familial aggregation of severity of diabetic retinopathy in Mexican Americans from Starr County, Texas. Diabetes Care. 2005;28:1163–1168.

    Article  PubMed  Google Scholar 

  4. Rema M, Saravanan G, Deepa R, Mohan V. Familial clustering of diabetic retinopathy in South Indian type 2 diabetic patients. Diabet Med. 2002;19:910–916.

    Article  CAS  PubMed  Google Scholar 

  5. Leslie RD, Pyke DA. Diabetic retinopathy in identical twins. Diabetes. 1982;31:19–21.

    Article  CAS  PubMed  Google Scholar 

  6. Warpeha KM, Chakravarthy U. Molecular genetics of microvascular disease in diabetic retinopathy. Eye. 2003;17:305–311.

    Article  CAS  PubMed  Google Scholar 

  7. Iyengar SK. The quest for genes causing complex traits in ocular medicine. Successes, interpretations, and challenges. Arch Ophthalmol. 2007;125:11–18.

    Article  CAS  PubMed  Google Scholar 

  8. Wolfe JA, Horton MB, McAteer MB, Szuter CF, Clayton T. Race, macular degeneration, and diabetic maculopathy. Arch Ophthalmol. 1993;111:1603–1604.

    CAS  PubMed  Google Scholar 

  9. Uhlmann K, Kovacs P, Boettcher Y, Hammes HP, Paschke R. Genetics of diabetic retinopathy. Exp Clin Endocrinol Diabetes. 2006;114(6):275–294.

    Article  CAS  PubMed  Google Scholar 

  10. Roy MS, Hallman DM, Fu YP, Machado M, Hanis CL. Assessment of 193 candidate genes for retinopathy in African Americans with type 1 diabetes. Arch Ophthalmol. 2009;127:605–612.

    Article  PubMed  Google Scholar 

  11. Gallie BL. Unexploited potential of molecular technology to unravel the pathogenesis of ocular diseases. Ophthalmology. 1988;95:1485–1486.

    CAS  PubMed  Google Scholar 

  12. Della NG. Molecular biology in ophthalmology. A review of principles and recent advances. Arch Ophthalmol. 1996;114:457–463.

    CAS  PubMed  Google Scholar 

  13. Freeman WR, Wiley CA. In situ nucleic acid hybridization. Surv Ophthalmol. 1989;34:187–192.

    Article  CAS  PubMed  Google Scholar 

  14. Mullen LM, Small KW. Molecular genetic techniques and applications in ophthalmology. Sem Ophthalmol. 1995;10:268–278.

    Article  CAS  Google Scholar 

  15. Human Genome Project. How many genes are in the human genome? http://www.ornl.gov/sci/techresources/Human_Genome/faq/genenumber.shtml . 2008. 12-21-2008.

  16. Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science. 2001;291:1304–1351.

    Article  CAS  PubMed  Google Scholar 

  17. Conneally PM. A first step toward a molecular genetic analysis of amyotrophic lateral sclerosis. NEJM. 1991;324:1430–1432.

    Article  CAS  PubMed  Google Scholar 

  18. Klintworth GK. Advances in the molecular genetics of corneal dystrophies. Am J Ophthalmol. 1999;128:747–754.

    Article  CAS  PubMed  Google Scholar 

  19. Musarella MA. Gene mapping of ocular diseases. Surv Ophthalmol. 1992;36:285–312.

    Article  CAS  PubMed  Google Scholar 

  20. Cunha-Vaz J. Characterization and relevance of different diabetic retinopathy phenotypes. Dev Ophthalmol. 2007;39:13–30.

    Article  CAS  PubMed  Google Scholar 

  21. Li H, Louey JWC, Choy KW, Liu DTL, Chan WM, Chan YM, et al. EDN1 Lys198Asn is associated with diabetic retinopathy in type 2 diabetes. Mol Vis. 2008;14:1698–1704.

    CAS  PubMed  Google Scholar 

  22. Wiwanitkit V. Angiotensin-converting enzyme gene polymorphism is correlated to diabetic retinopathy: a meta-analysis. J Diabetes Complicat. 2008;22:144–146.

    Article  PubMed  Google Scholar 

  23. Szaflik JP, Majsterek I, Kowalski M, Rusin P, Sobczuk A, Borucka AI, et al. Association between sorbitol dehydrogenase gene polymorphisms and type 2 diabetic retinopathy. Exp Eye Res. 2008;86:647–652.

    Article  CAS  PubMed  Google Scholar 

  24. Matsumoto A, Iwashima Y, Abiko A, Morikawa A, Sekiguchi M, Eto M, et al. Detection of the association between a deletion polymorphism in the gene encoding angiotensin I-converting enzyme and advanced diabetic retinopathy. Diabetes Res Clin Pract. 2000;50:195–202.

    Article  CAS  PubMed  Google Scholar 

  25. Szaflik JP, Majsterek I, Kowalski M, Rusin P, Sobczuk A, Borucka AI, et al. Association between sorbitol dehydrogenase gene polymorphisms and type 2 diabetic retinopathy. Exp Eye Res. 2008;86:647–652.

    Article  CAS  PubMed  Google Scholar 

  26. Dragon EA. Polymerase chain reaction. Sci Am. 1998; 279:112.

    Article  Google Scholar 

  27. Booth A, Churchill A, Anwar R, Menage M, Markham A. The genetics of primary open angle glaucoma. Br J Ophthalmol. 1997;81:409–414.

    Article  CAS  PubMed  Google Scholar 

  28. Wiggs JL. The human genome project and eye disease. Clinical implications. Arch Ophthalmol. 2001;119:1710–1711.

    CAS  PubMed  Google Scholar 

  29. Arar NH, Freedman BI, Adler SG, Iyengar SK, Chew EY, Davis MD, et al. Heritability of the severity of diabetic retinopathy: the FIND-Eye study. Invest Ophthalmol Vis Sci. 2008;49:3839–3845.

    Article  PubMed  Google Scholar 

  30. Hietala K, Forsblom C, Summanen P, Groop PH, on behalf of the FinnDiane Study Group. Heritability of proliferative diabetic retinopathy. Diabetes. 2008;57:2176–2180.

    Google Scholar 

  31. Diabetes Control and Complications Trial Research Group. Clustering of long-term complications in families with diabetes in the diabetes control and complications trial. Diabetes. 1997;46:1829–1839.

    Article  Google Scholar 

  32. Hallman DM, Huber JC Jr, Gonzalez VH, Klein BEK, Klein R, Hanis CL. Familial aggregation of severity of diabetic retinopathy in Mexican Americans from Starr County, Texas. Diabetes Care. 2005;28:1163–1168.

    Article  PubMed  Google Scholar 

  33. Awata T, Inoue K, Kurihara S, Ohkubo T, Watanabe M, Inukai K, et al. A common polymorphism in the 5'-untranslated region of the VEGF gene is associated with diabetic retinopathy in type 2 diabetes. Diabetes. 2002;51:1635–1639.

    Article  CAS  PubMed  Google Scholar 

  34. Errera FIV, Canani LH, Silva ME, Yeh E, Takahashi W, Santos KG, et al. Functional vascular endothelial growth factor -634G>C SNP is associated with proliferative diabetic retinopathy: a case-control study in a Brazilian population of European ancestry. Diabetes Care. 2007;30:275–279.

    Article  CAS  PubMed  Google Scholar 

  35. Uthra S, Raman R, Mukesh BN, Rajkumar SA, Padmaja KR, Paul PG, et al. Association of VEGF gene polymorphisms with diabetic retinopathy in a south Indian cohort. Ophthalmology. 2008;29:11–15.

    CAS  Google Scholar 

  36. Parving HH, Mauer M, Ritz E. The Kidney. Philadelphia: Elsevier; 2004.

    Google Scholar 

  37. Iyengar SK, Abboud HE, et al. Genome-wide scans for diabetic nephropathy and albuminuria in multiethnic populations: the family investigation of nephropathy and diabetes (FIND). Diabetes. 2007;56:1577–1585.

    Article  CAS  PubMed  Google Scholar 

  38. Moczulski DK, Rogus JJ, Antonellas A, Warram JH, Krolewski AS. Major susceptibility locus for nephropathy in type 1 diabetes on chromosome 3q: results of novel discordant sib-pair analysis. Diabetes. 1998;47:1164–1169.

    Article  CAS  PubMed  Google Scholar 

  39. Chistiakov DA, Savost'anov KV, Shestakova MV, Chugunova LA, Samkhalova MSh, Dedov II, et al. Confirmation of a susceptibility locus for diabetic nephropathy on chromosome 3q23-q24 by association study in Russian type 1 diabetic patients. Diabetes Res Clin Pract. 2004;66:79–86.

    Article  CAS  PubMed  Google Scholar 

  40. Kankova K, Stejskalova A, Pacal L, Tschoplova S, Hertlova M, Krusova D, et al. Genetic risk factors for diabetic nephropathy on chromosomes 6p and 7q identified by the set-association approach. Diabetologia. 2007;50:990–999.

    Article  CAS  PubMed  Google Scholar 

  41. Placha G, Canani LH, Warram JH, Krolewski AS. Evidence for different susceptibility genes for proteinuria and ESRD in type2 diabetes. Adv Chronic Kidney Dis. 2005;12:155–169.

    Article  PubMed  Google Scholar 

  42. Imperatore G, Knowler WC, Nelson RG, Hanson RL. Genetics of diabetic nephropathy in the Pima Indians. Curr Diabetes Rep. 2001;1:275–281.

    Article  CAS  Google Scholar 

  43. Tong Z, Yang Z, Patel S, Chen H, et al. Promoter polymorphism of the erythropoietin gene in severe diabetic eye and kidney complications. PNAS. 2008;105:6998–7003.

    Article  CAS  PubMed  Google Scholar 

  44. Watanabe D, Suzuma K, Matsui S, et al. Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy. N Engl J Med. 2005;353:782–792.

    Article  CAS  PubMed  Google Scholar 

  45. Vinores SA, Van Niel E, Swerdloff JL, Campochiaro PA. Electron microscopic immunocytochemical demonstration of blood-retinal barrier breakdown in human diabetics and its association with aldose reductase in retinal vascular endothelium and retinal pigment epithelium. Histochem J. 1993;25:648–663.

    Article  CAS  PubMed  Google Scholar 

  46. Kumaramanickavel G, Sripriya S, Ramprasad VL, Upadyay NK, Paul PG, Sharma T. Z-2 aldose reductase allele and diabetic retinopathy in India. Ophthalmic Genet. 2003;24:41–48.

    Article  PubMed  Google Scholar 

  47. Kao YL, Donaghue K, Chan A, Knight J, Silink M. A novel polymorphism in the aldose reductase gene promoter region is strongly associated with diabetic retinopathy in adolescents with type 1 diabetes. Diabetes. 1999;48:1338–1340.

    Article  CAS  PubMed  Google Scholar 

  48. Aiello LP, Northrup JM, Keyt BA, Takagi H, Iwamoto MA. Hypoxic Regulation of Vascular Endothelial Growth Factor in Retinal Cells. Arch Ophthalmol. 1995;113:1538–1544.

    CAS  PubMed  Google Scholar 

  49. Aiello LP, Bursell SE, Clermont A, Duh E, Ishii H, Takagi C, et al. Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective B-isoform-selective inhibitor. Diabetes. 1997;46:1473–1480.

    Article  CAS  PubMed  Google Scholar 

  50. Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med. 1994;331:1480–1487.

    Article  CAS  PubMed  Google Scholar 

  51. Ray D, Mishra M, Ralph S, Read I, Davies R, Brenchley P. Association of the VEGF gene with proliferative diabetic retinopathy but not proteinuria in diabetes. Diabetes. 2004;53:861–864.

    Article  CAS  PubMed  Google Scholar 

  52. Nakamura S, Iwasaki N, Funatsu H, Kitano S, Iwamoto Y. Impact of variants in the VEGF gene on progression of proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2009;247:21–26.

    Article  CAS  PubMed  Google Scholar 

  53. Pouvlaki V, Joussen AM, Mitsiades N, Mitsiades CS, Iliaki EF, Adamis AP. Insulin-like growth factor-I plays a pathogenetic role in diabetic retinopathy. Am J Pathol. 2004;165:457–469.

    Google Scholar 

  54. Simo R, Hernandez C, Segura RM, Garcia-Arumi J, Sararois L, Burgos R, et al. Free insulin-like growth factor 1 in the vitreous fluid of diabetic patients with proliferative diabetic retinopathy: a case control study. Clin Sci. 2003;104:223–230.

    Article  CAS  PubMed  Google Scholar 

  55. Rietveld I, Ikram MK, Vingerling JR, Hofman A, Pols HAP, Lamberts SWJ, et al. An IGF-I gene polymorphism modifies the risk of diabetic retinopathy. Diabetes. 2006;55:2387–2391.

    Article  CAS  PubMed  Google Scholar 

  56. Agardh D, Gaur LK, Agardh E, Landin-Olsson M, Agardh CD, Lernmark A. HLA-DQB1*0201/0302 is associated with severe retinopathy in patients with severe IDDM. Ophthalmologica. 1996;39:1313–1317.

    CAS  Google Scholar 

  57. Cruickshanks KJ, Vadheim CM, Moss SE, Roth MP, Riley WJ, Maclaren NK, et al. Genetic marker associations with proliferative retinopathy in persons diagnosed with diabetes before 30 years of age. Diabetes. 1992;41:879–885.

    Article  CAS  PubMed  Google Scholar 

  58. Falck AA, Knip JM, Ilonen JS, Laatikainen LT. Genetic markers in early diabetic retinopathy of adolescents with type 1 diabetes. J Diabetes Complicat. 1997;11:203–207.

    Article  CAS  PubMed  Google Scholar 

  59. Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med. 1988;318:1315–1320.

    Article  CAS  PubMed  Google Scholar 

  60. Brownlee M. Glycation and diabetic complications. Diabetes. 1994;43:836–841.

    CAS  PubMed  Google Scholar 

  61. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54:1615–1625.

    Article  CAS  PubMed  Google Scholar 

  62. Hudson BI, Stickland MH, Futers TS, Grant PJ. Effects of novel polymorphisms in the RAGE gene on transcriptional regulation and their association with diabetic retinopathy. Diabetes. 2001;50:1505–1511.

    Article  CAS  PubMed  Google Scholar 

  63. Liu L, Xiang K. RAGE Gly82Ser polymorphism in diabetic microangiopathy. Diabetes Care. 1999;22:646.

    Article  CAS  PubMed  Google Scholar 

  64. Kumaramanickavel G, Ramprasad VL, Sripriya S, Upadyay NK, Paul PG, Sharma T. Association of Gly82Ser polymorphism in the RAGE gene with diabetic retinopathy in type II diabetic Asian Indian patients. J Diabetes Complicat. 2002;16:391–394.

    Article  PubMed  Google Scholar 

  65. Hudson BI, Stickland MH, Futers TS, Grant PJ. Effects of novel polymorphisms in the RAGE gene on transcriptional regulation and their association with diabetic retinopathy. Diabetes. 2001;50:1505–1511.

    Article  CAS  PubMed  Google Scholar 

  66. Chen Y, Huang H, Zhou J, et al. Polymorphism of the endothelial nitric oxide synthase gene is associated with diabetic retinopathy in a cohort of West Africans. Mol Vis. 2007;13:2142–2147.

    PubMed  Google Scholar 

  67. Neugebauer S, Baba T, Watanabe T. Association of the nitric oxide synthase gene polymorphism with an increased risk for progression to diabetic nephropathy in type 2 diabetes. Diabetes. 2000;49:500–503.

    Article  CAS  PubMed  Google Scholar 

  68. Fujisawa T, Ikegami H, Kawaguchi Y, Hamada Y, Ueda H, Shintani M, et al. Meta-analysis of association of insertion/deletion polymorphism of angiotensin I-converting enzyme gene with diabetic retinopathy. Diabetologia. 1998;41:47–53.

    Article  CAS  PubMed  Google Scholar 

  69. Ha SK, Park HC, Park HS, Kang BS, Lee TH, Hwang HJ, et al. ACE gene polymorphism and progression of diabetic nephropathy in Korean type 2 diabetic patients: effect of ACE gene DD on the progression of diabetic nephropathy. Am J Kidney Dis. 2003;41:943–949.

    Article  CAS  PubMed  Google Scholar 

  70. Feghhi M, Nikzamir A, Esteghamati A, Farahi F, Nakhjavani M, Rashidi A. The relationship between angiotensin-converting enzyme insertion/deletion polymorphism and proliferative retinopathy in type 2 diabetes. Diabetes Res Clin Pract. 2008;81:e1–e4.

    Article  CAS  PubMed  Google Scholar 

  71. Imperatore G, Hanson RL, Pettitt DJ, Kobes S, Bennett PH, Knowler WC. Sib-pair linkage analysis for susceptibility genes for microvascular complications among Pima Indians with type 2 diabetes. Pima Diabetes Genes Group. Diabetes. 1998;47:821–830.

    Article  CAS  PubMed  Google Scholar 

  72. Fernandes R, Suzuki Ki, Kumagai AK. Inner blood-retinal barrier GLUT1 in long-term diabetic rats: an immunogold electron microscopic study. Invest Ophthalmol Vis Sci. 2003;44:3150–3154.

    Article  PubMed  Google Scholar 

  73. Kumagai AK, Glasgow BJ, Pardridge WM. GLUT1 glucose transporter expression in the diabetic and nondiabetic human eye. Invest Ophthalmol Vis Sci. 1994;35:2887–2894.

    CAS  PubMed  Google Scholar 

  74. Maeda M, Yamamoto I, Fukuda M, Motomura T, Nishida M, Nonen S, et al. MTHFR gene polymorphism is susceptible to diabetic retinopathy but not to diabetic nephropathy in Japanese type 2 diabetic patients. J Diabetes Complicat. 2008;22:119–125.

    Article  PubMed  Google Scholar 

  75. Demaine A, Cross D, Millward A. Polymorphisms of the Aldose reductase gene and susceptibility to retinopathy in type 1 diabetes mellitus. Invest Ophthalmol Vis Sci. 2000;41:4064–4068.

    CAS  PubMed  Google Scholar 

  76. Lee SC, Wang Y, Ko GT, Critchley JA, Ng MC, Tong PC, et al. Association of retinopathy with a microsatellite at 5' end of the aldose reductase gene in Chinese patients with late onset type 2 diabetes. Opthalmic Genet. 2001;22:63–67.

    Article  CAS  Google Scholar 

  77. Szaflik JP, Majsterek I, Kowalski M, Rusin P, Sobczuk A, Borucka AI, et al. Association between sorbitol dehydrogenase gene polymorphisms and type 2 diabetic retinopathy. Exp Eye Res. 2008;86:647–652.

    Article  CAS  PubMed  Google Scholar 

  78. Kofler B, Mueller E, Eder W, Stanger O, Maier R, Weger M, et al. Mitochondrial DNA haplogroup T is associated with coronary artery disease and diabetic retinopathy: a case control study. BMC Medical Genetics. 2009;10:35.

    Article  PubMed  CAS  Google Scholar 

  79. Ezzidi I, Mtiraoui N, Mohamed MBH, Mahjoub T, Kacem M, Almawi WY. Endothelial nitric oxide synthase Glu298Asp, 4b/a, and T-786C polymorphisms in type 2 diabetic retinopathy. Clin Endocrinol. 2008;68:542–546.

    Article  CAS  Google Scholar 

  80. Kumaramanickavel G, Sripriya S, Vellanki RN, Upadyay NK, Bedrinath SS, Rajendran V, et al. Inducible nitric oxide synthase gene and diabetic retinopathy in Asian Indian patients. Clin Genet. 2002;61:344–348.

    Article  CAS  PubMed  Google Scholar 

  81. Hudson BI, Stickland MH, Futers TS, Grant PJ. Effects of novel polymorphisms in the RAGE gene on transcriptional regulation and their association with diabetic retinopathy. Diabetes. 2001;50:1505–1511.

    Article  CAS  PubMed  Google Scholar 

  82. Petrovic MG, Cilensek I, Petrovic D. Manganese superoxide dismutase gene polymorphism (V16A) is associated with diabetic retinopathy in Slovene (Caucasians) type 2 diabetes patients. Dis Markers. 2008;24:59–64.

    CAS  PubMed  Google Scholar 

  83. Awata T, Kurihara S, Takata N, Neda T, Iizuka H, Ohkubo T, et al. Functional VEGF C-634G polymorphism is associated with development of diabetic macular edema and correlated with macular retinal thickness in type 2 diabetes. Biochem Biophys Res Commun. 2005;333:679–685.

    Article  CAS  PubMed  Google Scholar 

  84. Awata T, Neda T, Iizuka H, Kurihara S, Ohkubo T, Takata N, et al. Endothelial nitric oxide synthase gene is associated with diabetic macular edema in type 2 diabetes. Diabetes Care. 2004;27:2184–2190.

    Article  CAS  PubMed  Google Scholar 

  85. Churchill AJ, Carter JG, Ramsden C, Turner SJ, Yeung A, Brenchley PEC, et al. VEGF polymorphisms are associated with severity of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2008;49:3611–3616.

    Article  PubMed  Google Scholar 

  86. Nakanishi K, Watanabe C. Single nucleotide polymorphisms of vascular endothelial growth factor gene intron 2 are markers for early progression of diabetic retinopathy in Japanese with type 1 diabetes. Clin Chim Acta. 2009;402:171–175.

    Article  CAS  PubMed  Google Scholar 

  87. Costa V, Casamassimi A, Esposito K, Villani A, Capone M, Iannella R, et al. Characterization of a novel polymorphism in PPARG regulatory region associated with type 2 diabetes and diabetic retinopathy in Italy. J Biomed Biotechnol. 2009; doi:10.1155/2009/126917.

    Google Scholar 

  88. Petrovic MG, Krkovic M, Osredkar J, Hawlina M, Petrovic D. Polymorphisms in the promoter region of the basic fibroblast growth factor gene and proliferative diabetic retinopathy in Caucasians with type 2 diabetes. Clin Exp Ophthalmol. 2008;36:168–172.

    Article  Google Scholar 

  89. Petrovic MG, Korosec P, Kosnik M, Osredkar J, Hawlina M, Peterlin B, et al. Local and genetic determinants of vascular endothelial growth factor expression in advanced proliferative diabetic retinopathy. Mol Vis. 2008;14:1382–1387.

    CAS  PubMed  Google Scholar 

  90. Lindholm E, Bakhtadze E, Cilio C, Agardh E, Groop L, Agardh CD. Association between LTA, TNF, and AGER polymorphisms and late diabetic complications. PLoS ONE. 2008;3:1–6.

    Article  CAS  Google Scholar 

  91. Ko BC, Lam KS, Wat NM, Chung SS. An (A-C)n dinucleotide repeat polymorphic marker at the 5' end of the aldose reductase gene is associated with early-onset diabetic retinopathy in NIDDM patients. Diabetes. 1995;44:727–732.

    Article  CAS  PubMed  Google Scholar 

  92. Ichikawa F, Yamada K, Ishiyama-Shigemoto S, Yuan X, Nonaka K. Association of an (A-C)n dinucleotide repeat polymorphic marker at the 5'-region of the aldose reductase gene with retinopathy but not with nephropathy or neuropathy in Japanese patients with type 2 diabetes mellitus. Diabet Med. 1999;16:744–748.

    Article  CAS  PubMed  Google Scholar 

  93. Kumaramanickavel G, Sripriya S, Vellanki RN, Upadyay NK, Badrinath SS, Arokiasamy T, et al. Tumor necrosis factor allelic polymorphism with diabetic retinopathy in India. Diabetes Res Clin Pract. 2001;54:89–94.

    Article  CAS  PubMed  Google Scholar 

  94. Rudofsky G Jr, Schlotterer A, Humpert PM, Tafel J, Morcos M, Nawroth PP, et al. M55V polymorphism in the SUMO4 gene is associated with reduced prevalence of diabetic retinopathy in patients with type 1 diabetes. Exp Clin Endocrinol Diabetes. 2008;116:14–17.

    Article  CAS  PubMed  Google Scholar 

  95. Nagi DK, McCormack LJ, Mohamed-Ali V, Yudkin JS, Knowler WC, Grant PJ. Diabetic retinopathy, promoter (4G/5G) polymorphism of PAI-1 gene, and PAI-1 activity in Pima Indians with type 2 diabetes. Diabetes Care. 1997;20:1304–1309.

    Article  CAS  PubMed  Google Scholar 

  96. Beranek M, Kolar P, Tschoplova S, Kankova K, Vasku A. Genetic variations and plasma levels of gelatinase A (matirx metalloproteinase-2) and gelatinase B (matrix metalloproteinase-9) in proliferative diabetic retinopathy. Mol Vis. 2008;14:1114–1121.

    CAS  PubMed  Google Scholar 

  97. Rudofsky G Jr, Schlotterer A, Reismann P, Engel J, Grafe IA, Tafel J, et al. The -174G>C IL-6 gene promoter polymorphism and diabetic microvascular complications. Horm Metab Res. 2009;41:308–313.

    Article  CAS  PubMed  Google Scholar 

  98. Petrovic MG, Korosec P, Kosnik M, Osredkar J, Hawlina M, Peterlin B, et al. Local and genetic determinants of vascular endothelial growth factor expression in advanced proliferative diabetic retinopathy. Mol Vis. 2008;14:1382–1387.

    CAS  PubMed  Google Scholar 

  99. Wang N, Huang K, Zou H, Shi Y, Zhu J, Tang W, et al. No association found between the promoter variants of TNF-alpha and diabetic retinopathy in Chinese patients with type 2 diabetes. Curr Eye Res. 2008;33:377–383.

    Article  PubMed  CAS  Google Scholar 

  100. Neugebauer S, Baba T, Watanabe T. Association of the nitric oxide synthase gene polymorphism with an increased risk for progression to diabetic nephropathy in type 2 diabetes. Diabetes. 2000;49:500–503.

    Article  CAS  PubMed  Google Scholar 

  101. Hudson BI, Stickland MH, Futers TS, Grant PJ. Effects of novel polymorphisms in the RAGE gene on transcriptional regulation and their association with diabetic retinopathy. Diabetes. 2001;50:1505–1511.

    Article  CAS  PubMed  Google Scholar 

  102. Thomas GN, Critchley JAJH, Tomlinson B, Yeung VTF, Lam D, Cockram CS, et al. Renin-angiotensin system gene polymorphisms and retinopathy in chinese patients with type 2 diabetes. Diabetes Care. 2003;26:1643–1644.

    Article  PubMed  Google Scholar 

  103. Davis TME, Beilby J, Davis WA, Olnyk JK, Jeffrey GP, Rossi E, et al. Prevalence, characteristics, and prognostic significance of the HFE gene mutations in type 2 diabetes. The Fremantle diabetes study. Diabetes Care. 2008;31:1795–1801.

    Article  PubMed  Google Scholar 

  104. den Dunnen JT, Antonarakis SE. Recommendations for the description of sequence variants. Hum Mutat. 2008;15:7–12.

    Article  Google Scholar 

  105. Hartl DL, Jones EW. Gene linkage and genetic mapping. Essential Genetics. A Genomics Perspective. Sudbury: Jones and Bartlett; 2002:121–165.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Telander MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Telander, D.G., Small, K.W., Browning, D.J. (2010). Genetics and Diabetic Retinopathy. In: Browning, D. (eds) Diabetic Retinopathy. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85900-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-85900-2_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-85899-9

  • Online ISBN: 978-0-387-85900-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics