A Recommender System for an IPTV Service Provider: a Real Large-Scale Production Environment

  • Riccardo Bambini
  • Paolo Cremonesi
  • Roberto Turrin


In this chapter we describe the integration of a recommender system into the production environment of Fastweb, one of the largest European IP Television (IPTV) providers. The recommender system implements both collaborative and content-based techniques, suitable tailored to the specific requirements of an IPTV architecture, such as the limited screen definition, the reduced navigation capabilities, and the strict time constraints. The algorithms are extensively analyzed by means of off-line and on-line tests, showing the effectiveness of the recommender systems: up to 30% of the recommendations are followed by a purchase, with an estimated lift factor (increase in sales) of 15%.


Singular Value Decomposition Recommender System Latent Semantic Analysis Implicit Rating Electronic Program Guide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. Knowledge and Data Engineering, IEEE Transactions on 17(6), 734–749 (2005). DOI 10.1109/TKDE.2005.99Google Scholar
  2. 2.
    Anderson, C.: The Long Tail: Why the Future of Business Is Selling Less of More. Hyperion (2006). URL http://www.amazon.ca/exec/obidos/redirect?tag=citeulike04-20{\&}path=ASIN/1401302378
  3. 3.
    Balabanovi´c, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Commun. ACM 40(3), 66–72 (1997). DOI http://doi.acm.org/10.1145/245108.245124 Google Scholar
  4. 4.
    Bell, R.M., Koren, Y.: Scalable collaborative filtering with jointly derived neighborhood interpolation weights. 7th IEEE Int. Conf. on Data Mining pp. 43–52 (2007)Google Scholar
  5. 5.
    Berry, M.W.: Large-scale sparse singular value computations. The International Journal of Supercomputer Applications 6(1), 13–49 (1992). URL citeseer.ist.psu.edu/berry92large.htmlGoogle Scholar
  6. 6.
    Chai, K.M.A., Chieu, H.L., Ng, H.T.: Bayesian online classifiers for text classification and filtering pp. 97–104 (2002). DOI http://doi.acm.org/10.1145/564376.564395
  7. 7.
    Cremonesi, P., Lentini, E., Matteucci, M., Turrin, R.: An evaluation methodology for recommender systems. 4th Int. Conf. on Automated Solutions for Cross Media Content and Multi-channel Distribution pp. 224–231 (2008)Google Scholar
  8. 8.
    Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by latent semantic analysis. Journal of the American Society of Information Science 41(6), 391– 407 (1990). URL http://citeseer.ist.psu.edu/deerwester90indexing.html Google Scholar
  9. 9.
    Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms. ACM Transactions on Information Systems (TOIS) 22(1), 143–177 (2004). DOI http://doi.acm.org/10.1145/963770.963776 Google Scholar
  10. 10.
    Furnas, G.W., Deerwester, S., Dumais, S.T., Landauer, T.K., Harshman, R.A., Streeter, L.A., Lochbaum, K.E.: Information retrieval using a singular value decomposition model of latent semantic structure. pp. 465–480. ACM Press, New York, NY, USA (1988). DOI http://doi.acm.org/10.1145/62437.62487
  11. 11.
    Geneve, U.D., Marchand-maillet, S.: Vision content-based video retrieval: An overview 330 Riccardo Bambini, Paolo Cremonesi and Roberto TurrinGoogle Scholar
  12. 12.
    Gorrell, G.: Generalized Hebbian Algorithm for Incremental Singular Value Decomposition in Natural Language Processing. 11th Conference of the European Chapter of the Association for Compuational Linguistics (2006)Google Scholar
  13. 13.
    Hand, S., Varan, D.: Interactive narratives: Exploring the links between empathy, interactivity and structure pp. 11–19 (2008)Google Scholar
  14. 14.
    Herlocker, J., Konstan, J., Riedl, J.: An algorithmic framework for performing collaborative filtering. 22nd ACM SIGIR Conf. on R&D in Information Retrieval pp. 230–237 (1999)Google Scholar
  15. 15.
    Herlocker, J., Konstan, J., Terveen, L., Riedl, J.: Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems (TOIS) 22(1), 5–53 (2004)CrossRefGoogle Scholar
  16. 16.
    Husbands, P., Simon, H., Ding, C.: On the use of singular value decomposition for text retrieval (2000). URL citeseer.ist.psu.edu/article/husbands00use.htmlGoogle Scholar
  17. 17.
    Jensen, J.F.: Interactive television - a brief media history 5066, 1–10 (2008)Google Scholar
  18. 18.
    Kelly, D., Teevan, J.: Implicit feedback for inferring user preference: a bibliography. SIGIR Forum 37(2), 18–28 (2003). DOI http://doi.acm.org/10.1145/959258.959260 Google Scholar
  19. 19.
    Lee, Y., Lee, J., Kim, I., Shin, H.: Reducing iptv channel switching time using h.264 scalable video coding. Consumer Electronics, IEEE Transactions on 54(2), 912–919 (2008). DOI 10.1109/TCE.2008.4560178Google Scholar
  20. 20.
    Paterek, A.: Improving regularized singular value decomposition for collaborative filtering. Proceedings of KDD Cup and Workshop (2007)Google Scholar
  21. 21.
    Pazzani, M., Billsus, D.: Content-based recommendation systems. The AdaptiveWeb: Methods and Strategies of Web Personalization, Lecture Notes in Computer Science pp. 325–341 (2006)Google Scholar
  22. 22.
    Powers, D.M.W.: Evaluation: From Precision, Recall and F-Factor to ROC, Informedness, Markedness and Correlation (2000)Google Scholar
  23. 23.
    Rafey, R.A., Gibbs, S., Hoch, M., Gong, H.L.V., Wang, S.: Enabling custom enhancements in digital sports broadcasts pp. 101–107 (2001). DOI http://doi.acm.org/10.1145/363361.63384
  24. 24.
    Rokach, L., Maimon, O., Averbuch, M., Information Retrieval System for Medical Narrative Reports, Lecture Notes in Artificial intelligence 3055, page 217-228 Springer-Verlag (2004)Google Scholar
  25. 25.
    Saad, Y.: Numerical methods for large eigenvalue problems. Halsted Press New York (1992)MATHGoogle Scholar
  26. 26.
    Salton, G. (ed.): Automatic text processing. Addison-Wesley Longman Publishing Co., Inc.,lBoston, MA, USA (1988)Google Scholar
  27. 27.
    Sarwar, B., Karypis, G., Konstan, J., Reidl, J.: Item-based collaborative filtering recommendation algorithms. 10th Int. Conf. on World Wide Web pp. 285–295 (2001)Google Scholar
  28. 28.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Application of Dimensionality Reduction in Recommender System-A Case Study. Defense Technical Information Center (2000)Google Scholar
  29. 29.
    Schafer, J., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. pp. 291–324 (2007)Google Scholar
  30. 30.
    Sun, J., Gao, S.: Iptv based on ip network and streaming media service station. MIPPR 2007: Remote Sensing and GIS Data Processing and Applications; and Innovative Multispectral Technology and Applications 6790(1), 67904Q (2007). DOI 10.1117/12.749611. URL http://link.aip.org/link/?PSI/6790/67904Q/1
  31. 31.
    Valle-Lisboa, J.C., Mizraji, E.: The uncovering of hidden structures by latent semantic analysis. Inf. Sci. 177(19), 4122–4147 (2007). DOI http://dx.doi.org/10.1016/j.ins.2007.04.007 Google Scholar
  32. 32.
    Van Rijsbergen, C.J.: Information Retrieval, 2nd edition. Dept. of Computer Science, University of Glasgow (1979). URL citeseer.ist.psu.edu/vanrijsbergen79information.htmlGoogle Scholar
  33. 33.
    Vozalis, E., Margaritis, K.: Analysis of recommender systems algorithms. Proc. of the 6th Hellenic European Conf. on Computer Mathematics and its Applications (2003)Google Scholar
  34. 34.
    Wang, J., de Vries, A.P., Reinders, M.J.T.: Unifying user-based and item-based collaborative filtering approaches by similarity fusion. pp. 501–508. ACM Press, New York, NY, USA (2006). DOI http://doi.acm.org/10.1145/1148170.1148257 9 A Recommender System for an IPTV Service Provider 331
  35. 35.
    Zhang, H., Zheng, S., Yuan, J.: A personalized tv guide system compliant with mhp. Consumer Electronics, IEEE Transactions on 51(2), 731–737 (2005). DOI 10.1109/TCE.2005.1468026Google Scholar
  36. 36.
    Zhang, X., Berry, M.W., Raghavan, P.: Level search schemes for information filtering and retrieval. Information Processing and Management 37(2), 313–334 (2001). DOI http://dx.doi.org/10.1016/S0306-4573(00)00032-7

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Riccardo Bambini
    • 1
  • Paolo Cremonesi
    • 2
    • 3
  • Roberto Turrin
    • 2
    • 3
  1. 1.FastwebMilanoItaly
  2. 2.Politecnico di MilanoMilanoItaly
  3. 3.NeptunyMilanoItaly

Personalised recommendations