Aggregation of Preferences in Recommender Systems



This chapter gives an overview of aggregation functions toward their use in recommender systems. Simple aggregation functions such as the arithmetic mean are often employed to aggregate user features, item ratings, measures of similarity, etc., however many other aggregation functions exist which could deliver increased accuracy and flexibility to many systems. We provide definitions of some important families and properties, sophisticated methods of construction, and various examples of aggregation functions in the domain of recommender systems.


Recommender System Aggregation Function Aggregation Operator Fuzzy Measure Similar User 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



T. Calvo wishes to acknowledge her support from the projects MTM2006-08322 and PR2007-0193 from Ministerio de Educación y Ciencia, Spain and the EU project 143423-2008-LLP-ES-KA3-KA3MP.


  1. 1.
    Adomavicius, G., Sankaranarayanan, R., Sen, S., and Tuzhilin, A.: Incorporating contextual information in recommender systems using a multi-dimensional approach, ACMTransactions on information systems, 23(1), 103–145 (2005)CrossRefGoogle Scholar
  2. 2.
    Adomavicius, G. and Kwon, Y.: New Recommendation Techniques for Multicriteria Rating Systems. IEEE Intelligent Systems. 22(3), 48–55 (2007)CrossRefGoogle Scholar
  3. 3.
    Ahn, H.J.: A new similarity measure for collaborative filtering to alleviate the new user coldstarting problem. Information Sciences. 178, 37–51 (2008)CrossRefGoogle Scholar
  4. 4.
    Al-Shamri, M.Y.H. and Bharadwaj, K.K.: Fuzzy-genetic approach to recommender systems based on a novel hybrid user model. Expert Systems with Applications, 35, 1386–1399 (2008)CrossRefGoogle Scholar
  5. 5.
    Balabanovic, M. and Shoham, Y.: Fab: Content-Based, Collaborative Recommendation. Comm. ACM. 40(3), 66-72 (1997)CrossRefGoogle Scholar
  6. 6.
    Beliakov, G.: Monotone approximation of aggregation operators using least squares splines. Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems. 10, 659–676 (2002)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Beliakov, G.: How to build aggregation operators from data? Int. J. Intelligent Systems. 18, 903–923 (2003)MATHCrossRefGoogle Scholar
  8. 8.
    Beliakov, G.: FMTools package, version 1.0,,, (2007)
  9. 9.
    Beliakov, G. and Calvo, T.: Construction of Aggregation Operators With Noble Reinforcement. IEEE Transactions on Fuzzy Systems. 15(6), 1209–1218 (2007)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Beliakov, G., Pradera, A. and Calvo, T.: Aggregation Functions: A guide for practitioners. Springer, Heidelberg, Berlin, New York (2007)Google Scholar
  11. 11.
    Beliakov, G., Calvo, T. and James, S: On Lipschitz properties of generated aggregation functions. Fuzzy Sets and Systems, 161, 1437-1447 (2010)MATHCrossRefGoogle Scholar
  12. 12.
    Beliakov, G. and James, S: Using Choquet Integrals for kNN Approximation and Classification. In Gary G. Feng (ed.), 2008 IEEE International Conference on Fuzzy Systems (FUZZIEEE 2008), 1311-1317 (2008)Google Scholar
  13. 13.
    Bolton, J., Gader, P. and Wilson, J.N.: Discrete Choquet Integral as a Distance Metric. IEEE Trans. on Fuzzy Systems, 16(4), 1107–1110 (2008)CrossRefGoogle Scholar
  14. 14.
    Buchanan, B. and Shortliffe, E.: Rule-based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project. Addison-Wesley, Reading, MA (1984)Google Scholar
  15. 15.
    Bullen, P.S.: Handbook of Means and Their Inequalities. Kluwer, Dordrecht (2003)Google Scholar
  16. 16.
    Burke, R.: Hybrid Recommender Systems: Survey and Experiments, User Modeling and User-adapted interaction, 12(4), 331–370 (2002)MATHCrossRefGoogle Scholar
  17. 17.
    Calvo, T., Kolesárová, A., Komorníková, M. and Mesiar, R.: Aggregation operators: properties, classes and construction methods. In : Calvo, T., Mayor, G. and Mesiar, R. (eds.) Aggregation Operators. New Trends and Applications, pp. 3–104. Physica-Verlag, Heidelberg, New York (2002)Google Scholar
  18. 18.
    Chen, Y.-L. and Cheng, L.-C.: A novel collaborative filtering approach for recommending ranked items. Expert Systems with Applications. 34, 2396-2405 (2008)CrossRefGoogle Scholar
  19. 19.
    Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D. and Sartin, M.: Combining Content-Based and Collaborative Filters in an Online Newspaper. In Proceedings of SIGIR 99 Workshop on Recommender Systems: Algorithms and Evaluation, Berkeley, CA (1999)Google Scholar
  20. 20.
    Campos, L.M.d., Fernández-Luna, J.M. and Huete, J.F.: A collaborative recommender system based on probabilistic inference from fuzzy observations. Fuzzy Sets and Systems. 159, 1554–1576 (2008)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Dubois, D. and Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York (1980)Google Scholar
  22. 22.
    Dubois, D. and Prade, H.: Fundamentals of Fuzzy Sets. Kluwer, Boston (2000)Google Scholar
  23. 23.
    Dubois, D., Hllermeier, E., and Prade, H.: Fuzzy methods for case-based recommendation and decision support. J. Intell. Inform. Systems. 27(2), 95-115 (2006)CrossRefGoogle Scholar
  24. 24.
    Duda, R. Hart, P. and Nilsson, N.: Subjective Bayesian methods for rule-based inference systems. In Proc. Nat. Comput. Conf. (AFIPS), volume 45, 1075–1082 (1976)Google Scholar
  25. 25.
    Grabisch, M., Kojadinovic, I., and Meyer, P.: A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package. European Journal of Operational Research. 186, 766–785 (2008)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Hibbert, R.: What is Indie Rock? Popular Music and Society. 28(1), 55-77 (2005)CrossRefGoogle Scholar
  27. 27.
    Kaymak, U. and van Nauta Lemke, H.R.: Selecting an aggregation operator for fuzzy decision making. In 3rd IEEE Intl. Conf. on Fuzzy Systems, volume 2, 1418–1422 (1994)CrossRefGoogle Scholar
  28. 28.
    Klement, E.P., Mesiar, R. and Pap, E.: Triangular Norms. Kluwer, Dordrecht, (2000)Google Scholar
  29. 29.
    Kojadinovic, I. and Grabisch, M.: Non additive measure and integral manipulation functions, R package version 0.2,, (2005)
  30. 30.
    Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon, L.R., and Riedl, J.: GroupLens: applying collaborative filtering to Usenet news, Communications of the ACM, 40(3), 77–87 (1997)CrossRefGoogle Scholar
  31. 31.
    Krawczyk, H., Knopa, R., Lipczynska, K., and Lipczynski, M.: Web-based Endoscopy Recommender System - ERS. In International Conference on Parallel Computing in Electrical Engineering (PARELEC’00), Quebec, Canada, 257–261 (2000)Google Scholar
  32. 32.
    Linden, G., Smith, B., and York, J.: recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 7(1), 76–80 (2003)CrossRefGoogle Scholar
  33. 33.
    Mayor, G., and Calvo, T.: Extended aggregation functions. In IFSA’97, volume 1, Prague, 281–285 (1997)Google Scholar
  34. 34.
    Miller, B.N., Albert, I., Lam, S.K., Konstan, J.A., and Riedl, J.: MovieLens unplugged: experiences with an occasionally connected recommender system. In Proceedings of the 8th international ACM conference on Intelligent user intervaces, Miami, USA, 263–266 (2003)Google Scholar
  35. 35.
    Riedl, J. and Dourish, P.: Introduction to the special section on recommender systems, ACM Transactions on Computer-Human Interaction, 12(9), 371–373 (2005)CrossRefGoogle Scholar
  36. 36.
    Resnick, P., Iakovou, N., Sushak, M., Bergstrom, P., and Riedl, J.: GroupLens: An open architecture for collaborative filtering of Netnews. In Proceedings of ACMconference on computer supported cooperative work, Chapel Hill, NC, 175–186 (1994)Google Scholar
  37. 37.
    Rokach, L., Maimon, O., and Arbel, R.: Selective voting-getting more for less in sensor fusion, International Journal of Pattern Recognition and Artificial Intelligence 20(3), pp. 329–350 (2006)CrossRefGoogle Scholar
  38. 38.
    Rokach, L. and Maimon, O., Theory and applications of attribute decomposition, IEEE International Conference on Data Mining, IEEE Computer Society Press, pp. 473–480 (2001).Google Scholar
  39. 39.
    Salton, G. and McGill, M.: Introduction to Modern Information retrieval. McGraw Hill, New York (1983)MATHGoogle Scholar
  40. 40.
    Schafer, J.B., Konstan, J.A., and Riedl, J.: E-commerce recommendation applications, Data Mining and Knowledge Discover, 5, 115–153 (2001)Google Scholar
  41. 41.
    Santini, S. and Jain, R.: Similarity Measures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(9), 871–883 (1999)CrossRefGoogle Scholar
  42. 42.
    Ujjin, S., and Bentley, P.: Using evolutionary to learn user preferences. In: Tan, K., Lim, M., Yao, X. andWang, L. (eds.). Recent advances in simulated evolution and learning, pp. 20-40. World Scientific Publishing (2004)Google Scholar
  43. 43.
    Yager, R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. on Systems, Man and Cybernetics. 18, 183–190 (1988)MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Yager, R.: Noble Reinforcement in Disjunctive Aggregation Operators. IEEE Transactions on Fuzzy Systems. 11(6) 754–767 (2003)CrossRefGoogle Scholar
  45. 45.
    Yager, R. R. and Filev, D. P.: Induced ordered weighted averaging operators. IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics, 20(2), 141–150 (1999)CrossRefGoogle Scholar
  46. 46.
    Yager, R. and Rybalov. A.: Uninorm aggregation operators. Fuzzy Sets and Systems. 80, 111–120 (1996)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Information TechnologyDeakin UniversityBurwoodAustralia
  2. 2.Departamento de Ciencias de la ComputaciónUniversidad de AlcaláAlcalá de Henares (Madrid)Spain

Personalised recommendations