Advertisement

Creating More Credible and Persuasive Recommender Systems: The Influence of Source Characteristics on Recommender System Evaluations

  • Kyung-Hyan Yoo
  • Ulrike Gretzel
Chapter

Abstract

Whether users are likely to accept the recommendations provided by a recommender system is of utmost importance to system designers and the marketers who implement them. By conceptualizing the advice seeking and giving relationship as a fundamentally social process, important avenues for understanding the persuasiveness of recommender systems open up. Specifically, research regarding the influence of source characteristics, which is abundant in the context of humanhuman relationships, can provide an important framework for identifying potential influence factors. This chapter reviews the existing literature on source characteristics in the context of human-human, human-computer, and human-recommender system interactions. It concludes that many social cues that have been identified as influential in other contexts have yet to be implemented and tested with respect to recommender systems. Implications for recommender system research and design are discussed.

Keywords

Recommender System Source Characteristic Source Credibility Interface Agent Consumer Psychology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Addington, D.W. (1971). The effect of vocal variations on ratings of source credibility. Speech Monographs, 38, 242-247.CrossRefGoogle Scholar
  2. 2.
    Aksoy, L., Bloom, P. N., Lurie, N. H., & Cooil, B. (2006). recommendation agents think like people? Journal of Service Research, 8(4), 297-315.CrossRefGoogle Scholar
  3. 3.
    Al-Natour, S., Benbasat, I., & Cenfetelli, R. T. (2006). The role of design characteristics in shaping perceptions of similarity: The case of online shopping assistants. Journal of Association for Information Systems, 7(12), 821-861.Google Scholar
  4. 4.
    Andersen, K.E., & Clevenger, T., Jr. (1963). A summary of experimental research in ethos. Speech Monographs, 30, 59-78.CrossRefGoogle Scholar
  5. 5.
    Ansari, A., Essegaier, S. and Kohli, R. (2000). Internet Recommendation Systems. Journal of Marketing Research, 37(3), 363-375CrossRefGoogle Scholar
  6. 6.
    Atkinson, D.R., Winzelberg, A., & Holland, A. (1985). Ethnicity, locus of control for family planning, and pregnancy counselor credibility. Journal of Counseling Psychology, 32, 417-421.CrossRefGoogle Scholar
  7. 7.
    Barwise, P., Elberse, A. and Hammond, K. (2002). Marketing and the internet: a research review. In B, Weitz, & R. Wensley (Eds), Handbook of Marketing (pp. 3-7), New York, NY, Russell Sage.Google Scholar
  8. 8.
    Basartan, Y. (2001). Amazon Versus the Shopbot: An Experiment About How to Improve the Shopbots. Ph.D. Summer Paper, Carnegie Mellon University, Pittsburgh, PA.Google Scholar
  9. 9.
    Bechwati, N. N., & Xia, L. (2003). Do computers sweat? The impact of perceived effort of online decision aids on consumers’ satisfaction with the decision process. Journal of Consumer Psychology, 13, 1-2, 139-148.CrossRefGoogle Scholar
  10. 10.
    Bharti,P., & Chaudhury, A. (2004). An Empirical Investigation of Decision-Making Satisfaction in Web-Based Decision Support Systems. Decision Support Systems, 37 (2), 187-197.Google Scholar
  11. 11.
    Bickman, L. (1974). The social power of a uniform. Journal of Applied Social Psychology, 4, 47-61.Google Scholar
  12. 12.
    Bonhard P., & Sasse M. A. (2005). I thought it was terrible and everyone else loved it - A New Perspective for Effective Recommender System Design, in Proceedings of the 19th British HCI Group Annual Conference (pp. 251-261), Napier University, Edinburgh, UK 5-9 September 2005.Google Scholar
  13. 13.
    Buller, D. B., & Burgoon, J. K. (1996). Interpersonal deception theory. Communication Theory, 6, 203-242.CrossRefGoogle Scholar
  14. 14.
    Burgoon, J. K., Birk, T., & Pfau, M. (1990). Nonverbal behaviors, persuasion, and credibility. Human Communication Research, 17, 140-169.CrossRefGoogle Scholar
  15. 15.
    Burgoon, J. K., Dunbar, N. E. & Segring, C. (2002). Nonverbal Influence. In J. P. Dillard, & M. Pfau (Eds)., Persuasion Handbook: Developments in Theory and Practice (pp.445-473). Thousand Oaks, CA: Sage Publications.Google Scholar
  16. 16.
    Burke, R. (2002). Hybrid Recommender Systems: Survey and Experiments. User Modeling and User-Adapted Interaction, 12(4), 331-370.MATHCrossRefGoogle Scholar
  17. 17.
    Bryant, J., Brown, D., Silberberg, A.R., & Elliott, S.M. (1981). Effects of humorous illustrations in college textbooks. Human Communication Research, 8, 43-57.CrossRefGoogle Scholar
  18. 18.
    Byrne, D. (1971). The attraction paradigm. New York: Academic Press.Google Scholar
  19. 19.
    Carli, L. L., Ganley, R., & Pierce-Otay, A. (1991). Similarity and satisfaction in roommate relationships. Personality and Social Psychology Bulletin, 17 (4), 419-426.CrossRefGoogle Scholar
  20. 20.
    Chang, K.-J., & Gruner, C. R. (1981). Audience reaction to self-disparaging humor. Southern Speech Communication Journal, 46, 419-426.Google Scholar
  21. 21.
    Cialdini, R. B. (1994). Interpersonal Influence. In S. Shavitt, & T. C. Brock (Eds). Persuasion: Psychological Insights and Perspective (pp.195-217). Needhan Heights, Massachusetts, Allyn and BaconGoogle Scholar
  22. 22.
    Cooke, A. D. J., Sujan, H., Sujan, M., & Weitz, B. A. (2002). Marketing the Unfamiliar: The Role of Context and Item-Specific Information in Electronic Agent Recommendations, Journal of Marketing Research, 39 (4), 488-497.CrossRefGoogle Scholar
  23. 23.
    Cooper, J., Bennett, E.A., & Sukel, H. L. (1996). Complex scientific testimony: How do jurors make decisions? Law and Human Behavior, 20, 379-394.CrossRefGoogle Scholar
  24. 24.
    Cosley, D., Lam, S. K., Albert, I., Konstan, J., & Riedl, J. (2003). Is seeing believing? How recommender systems influence users’ opinions. In Proceedings of CHI 2003: Human Factorsin Computing Systems (pp. 585-592). New York: ACM Press.Google Scholar
  25. 25.
    Cowell, A. J. & Stanney, K. M. (2005). Manipulation of non-verbal interaction style and demographic embodiment to increase anthropomorphic computer character credibility. International Journal of Human-Computer Studies, 62, 281-306.CrossRefGoogle Scholar
  26. 26.
    Delgado-Ballester, E. (2004). Applicability of a brand trust scale across product categories: A multigroup invariance analysis. European Journal of Marketing, 38(5/6), 573-592.Google Scholar
  27. 27.
    Delia, J. G. (1975). Regional dialect, message acceptance, and perceptions of the speaker. Central States Speech Journal, 26, 188-194.Google Scholar
  28. 28.
    Dijkstra, J. J., Liebrand,W. B. G., & Timminga, E. (1998). Persuasiveness of Expert Systems. Behaviour & Information Technology, 17(3), 155-163.CrossRefGoogle Scholar
  29. 29.
    Eagly, A. H., Ashmore, R. D., Makhijani, M. G., & Longo, L. C. (1991). What is beautiful is good, but: A meta-analytic review of research on the physical attractiveness stereotype. Psychological Bulletin, 110, 109-128.CrossRefGoogle Scholar
  30. 30.
    Eagly, A. H. & Chaiken, S. (1975). An attribution analysis of the effect of communicator characteristics on opinion change: The case of communicator attractiveness, Journal of Personality and Social Psychology, 32(1), 136-144.CrossRefGoogle Scholar
  31. 31.
    Eagly, A.H., Wood, W., & Chaiken, S. (1978). Causal inferences about communicators and their effect on opinion change. Journal of Personality and Social Psychology, 36, 424, 435.Google Scholar
  32. 32.
    Engstrom, E. (1994). Effects of nonfluencies on speakers’ credibility in newscast settings. Perceptual and Motor Skills, 78, 739-743.Google Scholar
  33. 33.
    Fasolo, B., McClelland, G. H., & Lange, K. A. (2005). The Effect of Site Design and Interattribute Correlations on Interactive Web-Based Decisions. In C. P. Haughvedt, K. Machleit, and R. Yalch (Eds.) Online Consumer Psychology: Understanding and Influencing Behavior in the Virtual World (pp. 325-344). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  34. 34.
    Felix, D., Niederberger, C., Steiger, P., and Stolze, M. (2001). Featur-Oriented vs. Needs-Oriented Product Access for Non-expert Online Shoppers. In B. Schmid, K. Stanoevska- Slabeva, and V. Tschammer-Zurich (Eds.) Towards the E-Society: E-Commerce, E-Business, and E-Government (pp. 399-406). New York: Springer.Google Scholar
  35. 35.
    Fleshler, H., Ilardo, J., & Demoretcky, J. (1974). The influence of field dependence, speaker credibility set, and message documentation on evaluations of speaker and message credibility. Southern Speech Communication Journal, 39, 389-402.Google Scholar
  36. 36.
    Fogg, B. J. (2003). Persuasive technology: Using computers to change what we think and do. San Francisco: Morgan Kaufmann.Google Scholar
  37. 37.
    Fogg, B. J., Lee, E., & Marshall, J. (2002). Interactive technology and Persuasion. In J. P. Dillard, & M. Pfau (Eds). Persuasion handbook: Developments in theory and practice (pp.765- 797). London, United Kingdom: SageGoogle Scholar
  38. 38.
    Fogg, B.J., & Nass, C. (1997). Silicon sycophants: Effects of computers that flatter, International Journal of Human-Computer Studies, 46(5), 551-561.CrossRefGoogle Scholar
  39. 39.
    Gatignon, H., & Robertson, T. S. (1991). Innovative decision processes. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  40. 40.
    Giffen, K., & Ehrlich, L. (1963). Attitudinal effects of a group discussion on a proposed change in company policy. Speech Monographs, 30, 377-379.CrossRefGoogle Scholar
  41. 41.
    Giles, H., & Coupland, N. (1991). Language: Contexts and consequences. Pacific Grove, CA: Brooks/Cole.Google Scholar
  42. 42.
    Gilly, M. C., Graham, J. L., Wolfinbarger, M. F., & Yale, L. J. (1998). A dyadic study of personal information search. Journal of the Academy of Marketing Science, 26(2), 83-100.CrossRefGoogle Scholar
  43. 43.
    Gretzel, U., & Fesenmaier, D. R. (2007). Persuasion in Recommender Systems. International Journal of Electronic Commerce, 11(2), 81-100.CrossRefGoogle Scholar
  44. 44.
    Gruner, C. R., & Lampton, W. E. (1972). Effects of including humorous material in a persuasive sermon. Southern Speech Communication Journal, 38, 188-196.Google Scholar
  45. 45.
    Gundersen, D.F., & Hopper, R. (1976). Relationships between speech delivery and speech effectiveness. Communication Monographs, 43, 158-165.CrossRefGoogle Scholar
  46. 46.
    Harmon, R. R., & Coney, K. A. (1982). The persuasive effects of source credibility in buy and lease situations. Journal of Marketing Research, 19(2), 255-260.CrossRefGoogle Scholar
  47. 47.
    H¨aubl and Murray (2003). Preference Construction and Persistence in Digital Marketplaces: The Role of Electronic Recommendation Agents. Journal of Consumer Psychology, 13 (1&2), 75-91.Google Scholar
  48. 48.
    Herlocker, J., Konstan, J. A., & Riedl, J. (2000). Explaining Collaborative Filtering Recommendations. Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work, Philadelphia, PA, 241-250.Google Scholar
  49. 49.
    Hess, T., J., Fuller, M. A. & Mathew, J. (2005). Involvement and Decision-Making Performance with a Decision Aid: The Influence of Social Multimedia, Gender, and Playfulness. Journal of Management Information Systems, 22(3), 15-54.Google Scholar
  50. 50.
    Hewgill, M. A., & Miller, G. R. (1965). Source credibility and response to fear-arousing communications. Speech Monographs, 32, 95-101.CrossRefGoogle Scholar
  51. 51.
    Hofling, C. K., Brotzman, E., Dalrymple, S., Graves, N., & Pierce, C. M. (1966). An experimental study of nurse-physician relationships. Journal of Nervous and Mental Disease, 143, 171-180.CrossRefGoogle Scholar
  52. 52.
    Hogg, M. A., CooperShaw, L., & Holzworth, D. W. (1993). Group prototypically and depersonalized attraction in small interactive groups. Personality and Social Psychology Bulletin, 19 (4), 452-465.CrossRefGoogle Scholar
  53. 53.
    Holzwarth, M., Janiszewski, C. & Neumann, M.M. (2006). The influence of avatars on online cosumer shopping behavior. Journal of Marketing, 70(October), 19-36.CrossRefGoogle Scholar
  54. 54.
    Horai, J., Naccari, N., & Fatoullah, E. (1974). The effects of expertise and physical attractiveness upon opinion agreement and liking. Sociometry, <v >37, 601-606.Google Scholar
  55. 55.
    Hovland, C.I., Janis, I.L., & Kelley, H.H. (1953). Communication and Persuasion. New Haven, CT: Yale University Press.Google Scholar
  56. 56.
    Jiang, J. J., Klein, G., & Vedder, R.G. (2000). Persuasive expert systems: The influence of confidence and discrepancy. Computers in Human Behavior, 16. 99-109.Google Scholar
  57. 57.
    Jiang, Z. & Benbasat, I. (2005). Virtual Product Experience: Effects of Visual and Functional Control of Products on Perceived Diagnosticity and Flow in Electronic Shopping. Journal of Management Information Systems, 21 (3), 111-148.Google Scholar
  58. 58.
    Kim, B.-D., & Kim, S.-O. (2001). A new recommender system to combine content-based and collaborative filtering systems. Journal of Database Marketing, 8(3), 244-252.CrossRefGoogle Scholar
  59. 59.
    Kiesler, S., Sproull, L., &Waters, K. (1996). A prisoner’s dilemma experiment on cooperation with people and human-like computers. Journal of Personality and Social Psychology, 70(1), 47-65.CrossRefGoogle Scholar
  60. 60.
    Koda, T. (1996). Agents with faces: A study on the effects of personification of software agents. Master’s Thesis, Massachusetts Institute of Technology, Boston, MA, USA.Google Scholar
  61. 61.
    Komiak, S. X. and Benbasat, I. (2004). Understanding customer trust in agent-mediated electronic commerce, web-mediated electronic commerce and traditional commerce. Information Technology and Management, 5 (1&2), 181-207CrossRefGoogle Scholar
  62. 62.
    Komiak, S. Y. X., Wang, W., & Benbasat, I. (2005). Trust Building in Virtual Salespersons Versus in Human Salespersons: Similarities and Differences. e-Service Journal, 3(3), 49-63.CrossRefGoogle Scholar
  63. 63.
    Lautman, M. R., & Dean, K. J. (1983). Time compression of television advertising. In l. Percy & A. G. Woodside (Eds.), Advertising and consumer psychology (pp.219-236). Lexington, Ma: Lexington Books.Google Scholar
  64. 64.
    Lascu, D.-N., Bearden, W. O., & Rose, R. L. (1995). Norm extremity and personal influence on consumer conformity. Journal of Business Research, 32(3), 201-213.CrossRefGoogle Scholar
  65. 65.
    Lazarsfeld, P., and R. K. Merton. (1954). Friendship as a Social Process: A Substantive and Methodological Analysis. In M. Berger, T. Abel, and C. H. Page (Eds), Freedom and Control in Modern Society (pp. 18-66). New York: Van Nostrand.Google Scholar
  66. 66.
    Levine, R. V. (2003). Whom Do We Trust? Experts, Honesty, and Likability. In R. V. Levine (Ed.), The Power of Persuasion, pp.29-63. Hoboken, NJ: John Wiley & Sons.Google Scholar
  67. 67.
    Liao, Q. (2005). Empirical findings on persuasiveness of recommender systems for customer decision support in electronic commerce. Doctoral dissertation, Mississippi State University.Google Scholar
  68. 68.
    MacLachlan, J. (1982). Listener perception of time-compressed spokespersons. Journal of Advertising Research, 22(2), 47-51.Google Scholar
  69. 69.
    Maes, P., Guttman, R. H., & Moukas, A.G. (1999). Agents that Buy and Sell, Communication of the ACM, 42(3), 81-91.CrossRefGoogle Scholar
  70. 70.
    Mayer, R. C., Davis, J. H. & Schoorman, F. D. (1995). An integrative model of organizational trust. Academy of Management Review, 20, 709-734.CrossRefGoogle Scholar
  71. 71.
    Mayer, R. E., Johnson, W. L., Shaw, E. & Sandhu, S. (2006). Constructing computer-based tutors that are socially sensitive: Politeness in educational software. International Journal of Human-Computer Studies, 64(1), 36-42.CrossRefGoogle Scholar
  72. 72.
    McCroskey, J. C. (1970). The effects of evidence as an inhibitor of counter-persuasion. Speech Monographs, 37, 188-194.CrossRefGoogle Scholar
  73. 73.
    McCroskey, J. C., & Mehrley, R. S. (1969). The effects of disorganization and nonfluency on attitude change and source credibility. Speech Monographs, 36, 13-21.CrossRefGoogle Scholar
  74. 74.
    McGinty, L. & Smyth. B. (2002). Deep Dialogue vs Casual Conversation in Recommender Systems. In F. Ricci and B. Smyth (Eds), Proceedings of the Workshop on Personalization in eCommerce at the Second International Conference on Adaptive Hypermedia andWeb-Based Systems (AH 2002), pp. 80-89. Universidad de Malaga, Malaga, Spain, Springer.Google Scholar
  75. 75.
    McGuire, W. J. (1968). The Nature of Attitudes and Attitude Change. In G. Lindzey and E. Aronson (Eds.). Handbook of Social Psychology. Reading, MA: Addison-Wesley.Google Scholar
  76. 76.
    McNee, S. M.; Lam, S. K.; Konstan, J. A.; and Riedl, J. (2003). Interfaces for eliciting new user preferences in recommender systems. In User Modeling 2003, LNCS 2702, 178-187. Springer.Google Scholar
  77. 77.
    Michener, H. A., DeLamater, J. D., & Myers, D. J. (2004). Social Psychology. Wadsworth: Thomson Learning, Inc.Google Scholar
  78. 78.
    Mills, J., & Kimble, C. E. (1973). Opinion change as a function of perceived similarity of the communicator and subjectivity of the issue. Bulletin of the psychonomic society, 2, 35-36.Google Scholar
  79. 79.
    Mohr, L. A., & Bitner, M. J. (1995). The Role of Employee Effort in Satisfaction with Service Transactions. Journal of Business Research, 32(3), 239-252.CrossRefGoogle Scholar
  80. 80.
    Moon, Y. (2002). Personalization and Personality: Some Effects of Customizing Message Style Based on Consumer Personality. Journal of Consumer Psychology, 12(4), 313-326.CrossRefGoogle Scholar
  81. 81.
    Moon, Y., & Nass, C. (1996). How “real” are computer personalities? Psychological responses to personality types in human-computer interaction. Communication Research, 23(6), 651-674.CrossRefGoogle Scholar
  82. 82.
    Moreno, R., Mayer, R. E., Spires, H. A., & Lester, J. C. (2001). The case for social agency in computer-based teaching: Do students learn more deeply when they interact with animated pedagogical agents? Cognition and Instruction, 19(2), 177-213.CrossRefGoogle Scholar
  83. 83.
    Morkes, J., Kernal, H. K., & Nass, C. (1999). Effects of humor in task-oriented humancomputer interaction and computer-mediated communication: A direct test of SRCT theory. Human-Computer Interaction, 14(4), 395-435.CrossRefGoogle Scholar
  84. 84.
    Moulin, B., Irandoust, H., Belanger, M., & Desbordes, G. (2002). Explanation and argumentation capabilities: Towards the creation of more persuasive agents. Artificial Intelligence Review, 17, 169-222.MATHCrossRefGoogle Scholar
  85. 85.
    Moundridou, M., & Virvou, M. (2002). Evaluation the persona effect of an interface agent in a tutoring system. Journal of Computer Assisted Learning, 18(3), 253-261.CrossRefGoogle Scholar
  86. 86.
    Munn, W. C., & Gruner, C. R. (1981). “Sick” Jokes, speaker sex, and informative speech. Southern Speech Communication Journal, 46, 411-418.Google Scholar
  87. 87.
    Murano, P. (2003). Anthropomorphic vs. Non-Anthropomorphic Software Interface Feedback for Online Factual Delivery. Proceedings of the Seventh International Conference on Information Visualization. Retrieved October, 1, 2008 from http://portal.acm.org/citation.cfm?id=939634&dl=ACM&coll=portal
  88. 88.
    Nass, C., & Brave, S. (2005). Wired for Speech: How Voice Activates and Advances the Human-Computer Relationship. Cambridge, MA: MIT Press.Google Scholar
  89. 89.
    Nass, C., Fogg, B.J., & Moon, Y. (1996). Can computers be teammates? International Journal of Human-Computer Studies, 45(6), 669-678.CrossRefGoogle Scholar
  90. 90.
    Nass, C., Isbister, K., & Lee, E. -J. (2000). Truth is beauty: Researching embodied conversational agents. In J Cassell, J. Sullivan, S. Prevost, & E. Churchill (Eds), Embodied conversational agents (pp. 374-402). Cambridge, MA: MIT PresGoogle Scholar
  91. 91.
    Nass, C. & Moon, Y. (2000). Machines and Mindlessness: Social Responses to Computers. Journal of Social Issues, 56 (1), 81-103.CrossRefGoogle Scholar
  92. 92.
    Nass, C., & Moon, Y., & Carney, P. (1999). Are respondents polite to computers? Social desirability and direct responses to computers. Journal of Applied Social Psychology, 29 (5), 1093-1110.CrossRefGoogle Scholar
  93. 93.
    Nass, C., Moon, Y., & Green, N. (1997). Are computers gender-neutral? Gender stereotypic responses to computers. Journal of Applied Social Psychology, 27(10), 864-876.CrossRefGoogle Scholar
  94. 94.
    Nguyen, H., Masthoff, J. & Edwards. P. (2007). Persuasive Effects of Embodied Conversational Agent Teams. Proceedings of 12th International Conference on Human-Computer Interaction, Beijing, China, Springer-Verlag, Berlin, 176-185Google Scholar
  95. 95.
    Nowak, K. (2004). The influence of anthropomorphism and agency on social judgment in virtual environments. Journal of Computer-Mediated Communication, 9 (2)Google Scholar
  96. 96.
    Nowak, K. L., & Biocca, F. (2003). The effect of the agency and anthropomorphism on user’s sense of telepresence, copresence, and social presence in virtual environments. Presence: Teleperators and Virtual Environments, 12(5), 481-494.CrossRefGoogle Scholar
  97. 97.
    Nowak, K., & Rauh, C. (2005). The influence of the avatar on online perceptions of anthropomorphism, androgyny, credibility, homophily, and attraction. Journal of Computer-Mediated Communication, 11 (1)Google Scholar
  98. 98.
    O’Keefe, D. J. (1998). Justification explicitness and persuasive effect: A meta-analytic review of the effects of varying support articulation in persuasive messages. Argumentation and advocacy, 35, 61-75.Google Scholar
  99. 99.
    O’Keefe, D. J. (2002). Persuasion: Theory & Research. Thousand Oaks, CA: Sage Publications.Google Scholar
  100. 100.
    Parise S, Kiesler S, Sproull L, Waters K. (1999). Cooperating with life-like interface agents. Computers in Human Behavior, 15, 123-142.CrossRefGoogle Scholar
  101. 101.
    Pereira, R. E. (2000). Optimizing Human-Computer Interaction for the Electronic Commerce Environment. Journal of Electronic Commerce Research, 1 (1), 2000, 23-44.Google Scholar
  102. 102.
    Petty, R. E., & Cacioppo, J. T. (1981). Attitudes and persuasion: Classic and contemporary approaches. Dubuque, IA: William C. Brown.Google Scholar
  103. 103.
    Petty, R. E., & Cacioppo, J. T. (1986). Communication and Persuasion: Central and Peripheral Routes to Attitude Change. New York: Springer-Verlag.Google Scholar
  104. 104.
    Pittam, J. (1994). Voice in social interaction: An interdisciplinary approach. Thousand Oaks, CA: Sage.Google Scholar
  105. 105.
    Pu, P. & Chen, L. (2007). Trust-inspiring explanation interfaces for recommender systems. Knowledge-Based Systems , 20, 542-556CrossRefMathSciNetGoogle Scholar
  106. 106.
    Qiu, L. (2006). Designing social interaction with animated avatars and speech output for product recommendation agents in electronic commerce . Doctoral Thesis, University of British Co-lumbia, Vancouver.Google Scholar
  107. 107.
    Quintanar, L. R., Crowell, C. R., Pryor, J. B., & Adamopoulos, J. (1982). Human-computer interaction: A preliminary social psychological analysis. Behavior Research Methods & Instrumentation, 14 (2), 210-220.Google Scholar
  108. 108.
    Reeves, B. & Nass, C. (1996). The media equation: how people treat computers, television, and new media like real people and places . New York, NY: CSLI. 476 Kyung-Hyan Yoo and Ulrike GretzelGoogle Scholar
  109. 109.
    Rhoads, K. V., & Cialdini, R. B. (2002). The Business of Influence. J. P. Dillard & M. Pfau (Eds). Persuasion handbook: Developments in theory and practice . (pp.513-542). London, United Kingdom: SageGoogle Scholar
  110. 110.
    Rokach, L. (2008), Mining manufacturing data using genetic algorithm-based feature set decomposition, Int. J. Intelligent Systems Technologies and Applications, 4(1): 57-78.CrossRefGoogle Scholar
  111. 111.
    Sampson, E. E., & Insko, C. A. (1964). Cognitive consistency and performance in the autokinetic situation. Journal of Abnormal and Social Psychology, 68, 184-192.CrossRefGoogle Scholar
  112. 112.
    Schafer, J. B. (2005). DynamicLens: A Dynamic User-Interface for a Meta-Recommendation System.Workshop: Beyond Personalization 2005, IUI’05, San Diego, CA.Google Scholar
  113. 113.
    Schafer, J. B., Knostan, J.A., & Riedl, J. (2002). Meta-Recommendation Systems: User- Controlled Integration of Diverse Recommendations. Paper presented at the 11th international Conference on Information and Knowledge Management, McLean, VA, Novemeber 2002.Google Scholar
  114. 114.
    Schafer, J.B., Konstan, J.A., & Reidl, J. (2004). The View through MetaLens: Usage Patterns for a Meta Recommendation System. IEE Proceedings Software.Google Scholar
  115. 115.
    Schliesser, H. F. (1968). Informatio transmission and ethos of a speaker using normal and defective speech. Central States Speech Journal, 19, 169-174.Google Scholar
  116. 116.
    Sebastian, R. J., & Bristow, D. (2008). Formal or Informal? The Impact of Style of Dress and Forms of Address on Business Students’ Perceptions of Professors. Journal of Education for Business, 83(4), 196-201.CrossRefGoogle Scholar
  117. 117.
    Self, C. S. (1996). Credibility. In M. B. Salwen & D. W. Stacks (Eds.), An integrated approach to communication theory and research (pp. 421-441). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  118. 118.
    S´en´ecal, S., & Nantel, J. (2003). Online influence of relevant others: A framework. Proceedings of the Sixth International Conference on Electronic Commerce Research (ICECR-6), Dallas, Texas.Google Scholar
  119. 119.
    S´en´ecal, S., & Nantel, J. (2004). The influence of online product recommendations on consumers’ online choices. Journal of Retailing, 80(2), 159-169.CrossRefGoogle Scholar
  120. 120.
    Sinha, R. & Swearingen, K. (2001). Comparing Recommendations Made by Online Systems and Friends. Proceedings of the 2nd DELOS Network of Excellence Workshop on Personalization and Recommender Systems in Digital Libraries, Dublin Ireland, June 18-20.Google Scholar
  121. 121.
    Smith, R. E., & Hunt, S. D. (1978). Attributional processers and effects in promotional situations. Journal of Consumer Research, 5, 149-158.CrossRefGoogle Scholar
  122. 122.
    Smith, D., Menon, S., & Sivakumar, K. (2005). Online peer and editorial recommendations, trust, and choice in virtual markets. Journal of Interactive Marketing, 19(3), 15-37.CrossRefGoogle Scholar
  123. 123.
    Snyder, M., & Rothbart, M. (1971). Communicator attractiveness and opinion change. Canadian Journal of Behavioural Science, 3, 377-387.Google Scholar
  124. 124.
    Sproull, L., Subramani, M., Kiesler, S., Walker, J. H., & Waters, K. (1996). When the interface is a face. Human-Computer Interaction, 11(1), 97-124.CrossRefGoogle Scholar
  125. 125.
    Sutcliffe, A.G., Ennis, M., Hu, J. (2000). Evaluating the Effectiveness of Visual User Interfaces for Information Retrieval. International Journal of Human-Computer Studies, 53, 741-763MATHCrossRefGoogle Scholar
  126. 126.
    Swartz, T. A. (1984). Relationship between source expertise and source similarity in an advertising context. Journal of Advertising, 13(2), 49-55.MathSciNetGoogle Scholar
  127. 127.
    Swearingen, K., & Sinha, R. (2001). Beyond Algorithms:An HCI Perspective n Recommender Systems. Proceedings of the ACM SIGIR 2001Workshop on Recommender Systems, New Orleans, LouisianaGoogle Scholar
  128. 128.
    Swearingen, K. & Sinha, R. (2002). Interaction design for recommender systems. Designing Interactive Systems 2002. ACM, 2002.Google Scholar
  129. 129.
    Tamborini, R., & Zillmann, D. (1981). College students’ perceptions of lecturers using humor. Perceptual and Motor Skills, 52, 427-432.MATHGoogle Scholar
  130. 130.
    Taylor, P.M. (1974). An experimental study of humor and ethos. Southern Speech Communication Journal, 39, 359-366.Google Scholar
  131. 131.
    Tintarev, N. and Masthoff, J. (2007). Effective explanations of recommendations: Usercentered design. Proceedings of the ACM Conference on Recommender Systems, Minneapolis, US, 153-156.Google Scholar
  132. 132.
    Tzeng, J. -Y. (2004). Toward a more civilized design: Studying the effects of computers that apologize. International Journal of Human-Computer Studies, 61(3), 319-345.CrossRefGoogle Scholar
  133. 133.
    Wang, W. (2005). Design of Trustworthy Online Recommendation Agents: Explanation Facilities and Decision Strategy Support. Doctoral Thesis, University of British Columbia, Vancouver.Google Scholar
  134. 134.
    Wang, W., & Benbasat, I. (2005). Trust in and adoption of online recommendation agents. Journal of the Association for Information Systems, 6(3), 72-101.Google Scholar
  135. 135.
    Wang, W., & Benbasat, I. (2007). Recommendation Agents for Electronic Commerce: Effects of Explanation Facilities on Trusting Beliefs, Journal of Management Information Systems, 23 (4), 217-246.CrossRefGoogle Scholar
  136. 136.
    Wang, Y. D. & Emurian, H. H. (2005). An overview of online trust: Concepts, Elements and Implications. Computers in Human Behavior, 21(1), 105-125.CrossRefGoogle Scholar
  137. 137.
    West, P. M., Ariely, D., Bellman, S., Bradlow, E., Huber, J., Johnson, E., Kahn, B., Little, J., & Schkade, D. (1999). Agents to the rescue? Marketing Letters, 10 (3), 285-300CrossRefGoogle Scholar
  138. 138.
    Xiao, B., & Benbasat, I. (2007). E-Commerce product recommendation agents: Use, characteristics, and impact. MIS Quarterly, 31(1), 137-209.Google Scholar
  139. 139.
    Yoo, K. -H. (2008). Creating more credible and likable recommender systems. Dissertation Proposal. Texas A&M University.Google Scholar
  140. 140.
    Yoo, K. -H. & Gretzel, U. (2008). The influence of perceived credibility on preferences for recommender systems as sources of advice. Information Technology & Tourism, 10(2), 133- 146.CrossRefGoogle Scholar
  141. 141.
    Yoo, K. -H, & Gretzel, U. (2009). The Influence of Virtual Representatives on Recommender System Evaluation, Proceedings of the 15th Americas Conference on Information Systems, San Francisco, CaliforniaGoogle Scholar
  142. 142.
    Yoon, S. N., & Lee, Z. (2004). The impact of the Web-based Product Recommendation Systems from Previous Buyers on Consumers’ Purchasing Behavior. Paper presented at the tenth Americas Conference on Information Systems, New York, New York, August, 2004.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Communication departmentWilliam Paterson UniversityWayneUSA
  2. 2.Texas A&M UniversityCollege StationUSA

Personalised recommendations