Advertisement

On the Evolution of Critiquing Recommenders

  • Lorraine McGinty
  • James Reilly
Chapter

Abstract

Over the past decade a significant amount of recommender systems research has demonstrated the benefits of conversational architectures that employ critique-based interfacing (e.g., Show me more like item A, but cheaper). The critiquing phenomenon has attracted great interest in line with the growing need for more sophisticated decision/recommendation support systems to assist online users who are overwhelmed by multiple product alternatives. Originally proposed as a powerful yet practical solution to the preference elicitation problem central to many conversational recommenders, critiquing has proved to be a popular topic in a variety of related areas (e.g., group recommendation, mixed-initiative recommendation, adaptive user interfacing, recommendation explanation). This chapter aims to provide a comprehensive, yet concise, source of reference for researchers and practitioners starting out in this area. Specifically, we present a deliberately non-technical overview of the critiquing research which has been covered in recent years.

Keywords

Recommender System User Preference Preference Model Retrieval Failure Intelligent User Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules in large databases. Advances in Knowledge Discovery and Data Mining pp. 307–328 (1996)Google Scholar
  2. 2.
    Averjanova, O., Ricci, F., Nguyen, Q.N.: Map-based interaction with a conversational mobile recommender system. In: UBICOMM ’08: Proceedings of the 2008 The Second International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies, pp. 212– 218. IEEE Computer Society, Washington, DC, USA (2008)Google Scholar
  3. 3.
    Baatarjav, E.A., Phithakkitnukoon, S., Dantu, R.: Group recommendation system for facebook. In: OTM ’08: Proceedings of the OTM Confederated International Workshops and Posters on On the Move to Meaningful Internet Systems, pp. 211–219. Springer-Verlag, Berlin, Heidelberg (2008)Google Scholar
  4. 4.
    Burke, R.: The wasabi personal shopper: A case-based recommender system. In: Proceedings of the 11th National Conference on Innovative Applications of Artificial Intelligence, pp. 844–849. AAAI Press (1999). Menlo Park, CA, USAGoogle Scholar
  5. 5.
    Burke, R.: A case-based reasoning approach to collaborative filtering. In: E. Blanzieri, L. Portinale (eds.) Proceedings of the Fifth European Conference on Case-Based Reasoning, EWCBR ’00, pp. 370–379. Springer (2000). Trento, ItalyGoogle Scholar
  6. 6.
    Burke, R.: Hybrid recommender systems: Survey and experiments. User Modeling and User- Adapted Interaction 12(4), 331–370 (2002)MATHCrossRefGoogle Scholar
  7. 7.
    Burke, R., Hammond, K., Young, B.: Knowledge-based navigation of complex information spaces. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence, pp. 462–468. AAAI Press/MIT Press (1996). Portland, ORGoogle Scholar
  8. 8.
    Burke, R.D., Hammond, K.J., Young, B.C.: The findme approach to assisted browsing. IEEE Expert: Intelligent Systems and Their Applications 12(4), 32–40 (1997)Google Scholar
  9. 9.
    Chen, L., Pu, P.: Evaluating critiquing-based recommender agents. In: In Proc. AAAI 2006, pp. 157–162 (2006)Google Scholar
  10. 10.
    Chen, L., Pu, P.: The evaluation of a hybrid critiquing system with preference-based recommendations organization. In: RecSys ’07: Proceedings of the 2007 ACM conference on Recommender systems, pp. 169–172. ACM, New York, NY, USA (2007)Google Scholar
  11. 11.
    Chen, L., Pu, P.: Hybrid critiquing-based recommender systems. In: IUI ’07: Proceedings of the 12th international conference on Intelligent user interfaces, pp. 22–31. ACM, New York, NY, USA (2007)Google Scholar
  12. 12.
    Chen, L., Pu, P.: Preference-Based Organization Interfaces: Aiding User Critiques in Recommender Systems, pp. 77–86. Springer-Verlag, Berlin, Heidelberg (2007)Google Scholar
  13. 13.
    Chen, L., Pu, P.: A cross-cultural user evaluation of product recommender interfaces. In: RecSys ’08: Proceedings of the 2008 ACM Conference on Recommender systems, pp. 75– 82. ACM, New York, NY, USA (2008)Google Scholar
  14. 14.
    Cohen S., Rokach L., Maimon O., Decision Tree Instance Space Decomposition with Grouped Gain-Ratio, Information Science, Volume 177, Issue 17, pp. 3592-3612 (2007)Google Scholar
  15. 15.
    Faltings, B., Pu, P., Torrens, M., Viappiani, P.: Designing example-critiquing interaction. In: IUI ’04: Proceedings of the 9th international conference on Intelligent user interfaces, pp. 22–29. ACM, New York, NY, USA (2004)Google Scholar
  16. 16.
    Faratin, P., Sierra, C., Jennnings, N.: Using similarity criteria to make issue trade-offs in automated negotiations. Artificial Intelligence 142(2), 205–237 (2002)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Ha, V., Haddawy, P.: Problem-focused incremental elicitation of multi-attribute utility models. In: Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence, (UAI-97), pp. 215–222. Morgan Kaufmann (1997). URL citeseer.ist.psu.edu/ ha97problemfocused.html. San FranciscoGoogle Scholar
  18. 18.
    Hadzic, T., O’Sullivan, B.: Critique graphs for catalogue navigation. In: RecSys ’08: Proceedings of the 2008 ACM conference on Recommender systems, pp. 115–122. ACM, New York, NY, USA (2008)Google Scholar
  19. 19.
    Hammond, K., Burke, R., Schmitt, K.: A case-based approach to knowledge navigation. In: D. Leake (ed.) Case-Based Reasoning Experiences, Lessons and Future Directions., pp. 125– 136. AAAI Press (1996)Google Scholar
  20. 20.
    Jameson, A.: More than the sum of its members: Challenges for group recommender systems. In: AVI ’04: Proceedings of the working conference on Advanced visual interfaces, pp. 48– 54. ACM, New York, NY, USA (2004)Google Scholar
  21. 21.
    Lee, K., Joshi, K., McIvor, R.: Understanding multicultural differences in online satisfaction. In: SIGMIS-CPR ’07: Proceedings of the 2007 ACM SIGMIS CPR conference on Computer personnel research, pp. 209–212. ACM, New York, NY, USA (2007)Google Scholar
  22. 22.
    Linden, G., Hanks, S., Lesh, N.: Interactive assessment of user preference models: The automated travel assistant. In: C.P.A. Jameson, C. Tasso (eds.) User Modeling: Proceedings of the Sixth International Conference, pp. 67–78. Springer Wien (1997)Google Scholar
  23. 23.
    Lodge, C.: The impact of culture on usability: Designing usable products for the international user. In: N.M. Aykin (ed.) Usability and Internationalization. HCI and Culture, Second International Conference on Usability and Internationalization, UI-HCII 2007, Held as Part of HCI International 2007, Beijing, China, July 22-27, 2007, Proceedings, Part I, pp. 365–368. Springer (2007)Google Scholar
  24. 24.
    Masthoff, J., Gatt, A.: In pursuit of satisfaction and the prevention of embarrassment: Affective state in group recommender systems. User Modeling and User-Adapted Interaction 16(3-4), 281–319 (2006)CrossRefGoogle Scholar
  25. 25.
    McCarthy, J., Anagnost, T.: Musicfx: An arbiter of group preferences for computer aupported collaborative workouts. In: Proc. of Conference on Computer Supported Cooperative Work, pp. 363–372 (1998)Google Scholar
  26. 26.
    McCarthy, K., Reilly, J., McGinty, L., Smyth, B.: On the dynamic generation of compound critiques in conversational recommender systems. In: Adaptive Hypermedia and Adaptive Web-Based Systems, Third International Conference, AH 2004, Eindhoven, The Netherlands, August 23-26, 2004, Proceedings, Lecture Notes in Computer Science, vol. 3137, pp. 176– 184. Springer (2004)Google Scholar
  27. 27.
    McCarthy, K., Reilly, J., McGinty, L., Smyth, B.: Experiments in dynamic critiquing. In: IUI ’05: Proceedings of the 10th international conference on Intelligent user interfaces, pp. 175–182. ACM, New York, NY, USA (2005)Google Scholar
  28. 28.
    McCarthy, K., Reilly, J., Smyth, B., McGinty, L.: Generating diverse compound critiques. Artif. Intell. Rev. 24(3-4), 339–357 (2005)CrossRefGoogle Scholar
  29. 29.
    McCarthy, K., Salam´o, M., Coyle, L., McGinty, L., Smyth, B., Nixon, P.: Cats: A synchronous approach to collaborative group recommendation. In: G. Sutcliffe, R. Goebel (eds.) Proceedings of the Nineteenth International Florida Artificial Intelligence Research Society Conference, Melbourne Beach, Florida, USA, May 11-13, 2006, pp. 86–91. AAAI Press (2006)Google Scholar
  30. 30.
    McCarthy, K., Salam´o, M., Coyle, L., McGinty, L., Smyth, B., Nixon, P.: Group recommender systems: A critiquing based approach. In: IUI ’06: Proceedings of the 11th international conference on Intelligent user interfaces, pp. 267–269. ACM, New York, NY, USA (2006)Google Scholar
  31. 31.
    McCarthy, K., Salam´o, M., McGinty, L., Smyth, B.: The needs of the many: A case-based group recommender system. In: ICCBR ’06: Proceedings of the 11th international conference on Intelligent user interfaces, pp. 196–210. Springer LNCS (2006)Google Scholar
  32. 32.
    McGinty, L., Smyth, B.: The role of diversity in conversational systems. In: D. Bridge, K. Ashley (eds.) Proceedings of the Fifth International Conference on Case-Based Reasoning (ICCBR-03). Springer (2003). Troindheim, Norway.Google Scholar
  33. 33.
    McGinty, L., Smyth, B.: Tweaking critiquing. In: Proceedings of the Workshop on Personalization and Web Techniques at the International Joint Conference on Artificial Intelligence (IJCAI-03). Morgan-Kaufmann (2003). Acapulco, MexicoGoogle Scholar
  34. 34.
    McGinty, L., Smyth, B.: Adaptive selection: An analysis of critiquing and preference-based feedback in conversational recommender systems. Int. J. Electron. Commerce 11(2), 35–57 (2006)CrossRefGoogle Scholar
  35. 35.
    McSherry, D.: Similarity and compromise. In: K. Ashley, D. Bridge (eds.) Case-Based Reasoning Research and Development. LNAI Vol.2689, pp. 291–305. Springer (2003)Google Scholar
  36. 36.
    McSherry, D.: Explaining the pros and cons of conclusions in cbr. In: P. Funk, P.A. González- Calero (eds.) Advances in Case-Based Reasoning, 7th European Conference, ECCBR 2004, Madrid, Spain, August 30 - September 2, 2004, Proceedings, pp. 317–330. Springer (2004)Google Scholar
  37. 37.
    McSherry, D.: Retrieval failure and recovery in recommender systems. Artif. Intell. Rev. 24(3-4), 319–338 (2005)CrossRefGoogle Scholar
  38. 38.
    McSherry, D., Aha, D.: Mixed-initiative relaxation of constraints in critiquing dialogues. In: ICCBR ’07: Proceedings of the 7th international conference on Case-Based Reasoning, pp. 107–121. Springer-Verlag, Berlin, Heidelberg (2007)Google Scholar
  39. 39.
    McSherry, D., Aha, D.W.: Avoiding long and fruitless dialogues in critiquing. In: M. Bramer, F. Coenen, A. Tuson (eds.) Research and Development in Intelligent Systems XXIII. BCS Conference Series, pp. 173–186. Springer, London (2006)Google Scholar
  40. 40.
    McSherry, D., Aha, D.W.: The ins and outs of critiquing. In: M.M. Veloso (ed.) Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI), Hyderabad, India, January 6-12, 2007, pp. 962–967 (2007)Google Scholar
  41. 41.
    Nguyen, Q., Ricci, F.: User preferences initialization and integration in critique-based mobile recommender systems. In: In Proc. 5th Int’l Workshop Artificial Intelligence in Mobile Systems (AIMS 04),, p. pp. 7178 (2004)Google Scholar
  42. 42.
    Nguyen, Q., Ricci, F., Cavada, D.: Critique-based recommendations for mobile users: Gui design and evaluation. In: In Proceedings of the 3rd InternationalWorkshop on HCI in Mobile Guides, in conjunction with the 6th International Conference on Mobile Human-Computer Interaction (2004). Glasgow, Scotland.Google Scholar
  43. 43.
    Nguyen, Q.N., Ricci, F.: Replaying live-user interactions in the off-line evaluation of critiquebased mobile recommendations. In: RecSys ’07: Proceedings of the 2007 ACM conference on Recommender systems, pp. 81–88. ACM, New York, NY, USA (2007)Google Scholar
  44. 44.
    Nguyen, Q.N., Ricci, F.: Long-term and session-specific user preferences in a mobile recommender system. In: IUI ’08: Proceedings of the 13th international conference on Intelligent user interfaces, pp. 381–384. ACM, New York, NY, USA (2008)Google Scholar
  45. 45.
    Noiwan, J., Norcio, A.F.: Cultural differences on attention and perceived usability: Investigating color combinations of animated graphics. Int. J. Hum.-Comput. Stud. 64(2), 103–122 (2006)Google Scholar
  46. 46.
    O’Connor, M., Cosley, D., Konstan, J., Riedl, J.: Polylens: A recommender system for groups of users. In: Proc. of European Conference on Computer-Supported Cooperative Work, pp. 199–218 (2001)Google Scholar
  47. 47.
    Park, Y.J., Chang, K.N.: Individual and group behavior-based customer profile model for personalized product recommendation. Expert Syst. Appl. 36(2), 1932–1939 (2009)CrossRefMathSciNetGoogle Scholar
  48. 48.
    Payne, J., Bettman, J., Johnson, E.: The Adaptive Decision Maker. Cambridge University Press (1993)Google Scholar
  49. 49.
    Plua, C., Jameson, A.: Collaborative preference elicitation in a group travel recommender system. In: Proceedings of the AH 2002 Workshop on Recommendation and Personalization in eCommerce, pp. 148–154. Malaga, Spain (2002)Google Scholar
  50. 50.
    Prada, R., Paiva, A.: Believable groups of synthetic characters. In: Proceedings of the 4th International Joint Conference on Autonomous Agents and Multi-Agent Systems, pp. 37–43. The Netherlands (2005)Google Scholar
  51. 51.
    Pu, P., Chen, L.: Trust building with explanation interfaces. In: IUI ’06: Proceedings of the 11th international conference on Intelligent user interfaces, pp. 93–100. ACM, New York, NY, USA (2006)Google Scholar
  52. 52.
    Pu, P., Chen, L.: Trust-inspiring explanation interfaces for recommender systems. Know.- Based Syst. 20(6), 542–556 (2007)CrossRefGoogle Scholar
  53. 53.
    Pu, P., Faltings, B.: Personalized navigation of heterogeneous product spaces using smartclient. In: IUI ’02: Proceedings of the 7th international conference on Intelligent user interfaces, pp. 212–213. ACM, New York, NY, USA (2002)Google Scholar
  54. 54.
    Pu, P., Faltings, B.: Decision tradeoff using example-critiquing and constraint programming. Constraints 9(4), 289–310 (2004)CrossRefGoogle Scholar
  55. 55.
    Pu, P., Z., H., Kumar, P.: Evaluating example-based search tools. In: EC ’04: Proceedings of the 5th ACM conference on Electronic commerce, pp. 208–217. ACM, New York, NY, USA (2004)Google Scholar
  56. 56.
    Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Dynamic critiquing. In: P. Funk, P.A. González-Calero (eds.) Advances in Case-Based Reasoning, 7th European Conference, ECCBR 2004, Madrid, Spain, August 30 - September 2, 2004, Proceedings, Lecture Notes in Computer Science, vol. 3155, pp. 763–777. Springer (2004)Google Scholar
  57. 57.
    Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Explaining compound critiques. Artif. Intell. Rev. 24(2), 199–220 (2005)CrossRefGoogle Scholar
  58. 58.
    Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Incremental critiquing. Knowl.-Based Syst. 18(4-5), 143–151 (2005)CrossRefGoogle Scholar
  59. 59.
    Reilly, J., Smyth, B., McGinty, L., McCarthy, K.: Critiquing with confidence. In: H. Muñoz- Avila, F. Ricci (eds.) Case-Based Reasoning, Research and Development, 6th International Conference, on Case-Based Reasoning, ICCBR 2005, Chicago, IL, USA, August 23-26, 2005, Proceedings, Lecture Notes in Computer Science, vol. 3620, pp. 436–450. Springer (2005)Google Scholar
  60. 60.
    Reilly, J., Zhang, J., McGinty, L., Pu, P., Smyth, B.: A comparison of two compound critiquing systems. In: IUI ’07: Proceedings of the 12th international conference on Intelligent user interfaces, pp. 317–320. ACM, New York, NY, USA (2007)Google Scholar
  61. 61.
    Ricci, F., Nguyen, Q.N.: Critique-based mobile recommender systems,. GAI Journal, GAI Press Volume 24, Number 4 (2004)Google Scholar
  62. 62.
    Ricci, F., Nguyen, Q.N.: Acquiring and revising preferences in a critique-based mobile recommender system. IEEE Intelligent Systems 22(3), 22–29 (2007)CrossRefGoogle Scholar
  63. 63.
    Salamo, M., Reilly, J., McGinty, L., Smyth, B.: Improving incremental critiquing. In: In Procedings of the 16th Conference on Artificial Intelligence and Cognitive Science (AICS05), pp. 379–388 (2005)Google Scholar
  64. 64.
    Shearin, S., Lieberman, H.: Intelligent profiling by example. In: IUI ’01: Proceedings of the 6th international conference on Intelligent user interfaces, pp. 145–151. ACM, New York, NY, USA (2001)Google Scholar
  65. 65.
    Smyth, B., McGinty, L.: Improving the Performance of Recommender Systems that Use Critiquing, chap. Intelligent Techniques for Web Personalization, pp. 114–132. 978-3-540- 29846-5. Springer (2005)Google Scholar
  66. 66.
    Sørmo, F., Cassens, J., Aamodt, A.: Explanation in case-based reasoning-perspectives and goals. Artificial Intelligence Review 24(2), 109–143 (2005)CrossRefGoogle Scholar
  67. 67.
    Spiekermann, S., Paraschiv, C.: Motivating Human-Agent Interaction: Transferring Insights from Behavioral Marketing to Agent Design, pp. 255–285. Kluwer Academic Publishers (2002)Google Scholar
  68. 68.
    Viappiani, P., Faltings, B., Pu, P.: Preference-based search using example-critiquing with suggestions. Journal of Artificial Intelligence Research 27, 2006 (2006)Google Scholar
  69. 69.
    Weld, D., Anderson, C., Domingos, P., Etzioni, O., Lau, T., Gajos, K.,Wolfman, S.: Automatically personalizing user interfaces. In: Proceedings of the 18th International Joint Confer13 On the Evolution of Critiquing Recommenders 453 ence Artificial Intelligence (IJCAI-03), pp. 1613–1619. Morgan Kaufman (2003). Acapulco, MexicoGoogle Scholar
  70. 70.
    Williams, M.: What makes rabbit run? International Journal of Man-Machine Studies 21, 333–352 (1984)CrossRefGoogle Scholar
  71. 71.
    Williams, M., Tou, F.: Rabbit: An interface for database access. In: In Proceedings of the ACM’82 Conference, pp. 83–87. ACM, New York, USA (1982)Google Scholar
  72. 72.
    Zhang, J., Jones, N., Pu, P.: A visual interface for critiquing-based recommender systems. In: EC ’08: Proceedings of the 9th ACM conference on Electronic commerce, pp. 230–239. ACM, New York, NY, USA (2008)Google Scholar
  73. 73.
    Zhang, J., Pu, P.: A comparative study of compound critique generation in conversational recommender systems. In: V.P. Wade, H. Ashman, B. Smyth (eds.) Adaptive Hypermedia and Adaptive Web-Based Systems, 4th International Conference, AH 2006, Dublin, Ireland, June 21-23, 2006, Proceedings, Lecture Notes in Computer Science, vol. 4018, pp. 234–243. Springer (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.UCD School of Computer Science and InformaticsUniversity College DublinDublin 4Ireland
  2. 2.Google Inc., 5 Cambridge CenterCambridgeUS

Personalised recommendations