Development of Natural Killer cells

  • Francesco Colucci


Natural killer cells are found in blood, lymphoid organs, liver, lungs and uterus, where they participate in several aspects of health and disease. During development, NK cells express a set of genes that encode for cell surface receptors, which interact with other cell surface molecules within the individual, between individuals and across genomes. Examples of the elements recognized by NK cells are self-MHC antigens during NK cell maturation, stress-inducible ligands during infections or tumour transformation, donor antigens on tissue grafts, paternal antigens at the feto—maternal interface and viral products. The nature of these interactions sets the threshold for NK cell activation, which in turn has downstream consequences on innate immunity and adaptive responses. Being endowed with these important recognition systems and instant effector function potential, NK cells have taken centre stage in modern medicine as they participate in infection, reproduction, transplantation, autoimmunity and cancer. This chapter reviews the basics of NK cell development, with an emphasis on murine cells.


Natural Killer Cell Dolichos Biflorus Agglutinin Natural Killer Cell Development Ly49 Receptor CD56 Bright CD16 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anfossi, N., Andre, P., Guia, S., Falk, C. S., Roetynck, S., Stewart, C. A., Breso, V., Frassati, C., Reviron, D., Middleton, D., et al. (2006). Human NK cell education by inhibitory receptors for MHC class I. Immunity 25, 331–342.PubMedCrossRefGoogle Scholar
  2. Bloch-Queyrat, C., Fondaneche, M. C., Chen, R., Yin, L., Relouzat, F., Veillette, A., Fischer, A., and Latour, S. (2005). Regulation of natural cytotoxicity by the adaptor SAP and the Src- related kinase Fyn. J Exp Med 202, 181–192.PubMedCrossRefGoogle Scholar
  3. Boos, M. D., Yokota, Y., Eberl, G., and Kee, B. L. (2007). Mature natural killer cell and lymphoid tissue-inducing cell development requires Id2-mediated suppression of E protein activity. J Exp Med 204, 1119–1130.PubMedCrossRefGoogle Scholar
  4. Caraux, A., Lu, Q., Fernandez, N., Riou, S., Di Santo, J. P., Raulet, D. H., Lemke, G., and Roth, C. (2006). Natural killer cell differentiation driven by Tyro3 receptor tyrosine kinases. Nat Immunol 7, 747–754.PubMedCrossRefGoogle Scholar
  5. Carlyle, J. R., Jamieson, A. M., Gasser, S., Clingan, C. S., Arase, H., and Raulet, D. H. (2004). Missing self-recognition of Ocil/Clr-b by inhibitory NKR-P1 natural killer cell receptors. Proc Natl Acad Sci USA 101, 3527–3532.PubMedCrossRefGoogle Scholar
  6. Colucci, F., Di Santo, J. P., and Leibson, P. J. (2002). Natural killer cell activation in mice and men: different triggers for similar weapons? Nat Immunol 3, 807–813.PubMedCrossRefGoogle Scholar
  7. Colucci, F., Caligiuri, M. A., and Di Santo, J. P. (2003). What does it take to make a natural killer? Nat Rev Immunol 3, 413–425.PubMedCrossRefGoogle Scholar
  8. Cooper, M. A., Fehniger, T. A., and Caligiuri, M. A. (2001). The biology of human natural killercell subsets. Trends Immunol 22, 633–640.PubMedCrossRefGoogle Scholar
  9. Croy, B. A., van den Heuvel, M. J., Borzychowski, A. M., and Tayade, C. (2006). Uterine natural killer cells: a specialized differentiation regulated by ovarian hormones. Immunol Rev 214, 161–185.CrossRefGoogle Scholar
  10. Di Santo, J. P. (2006). Natural killer cell developmental pathways: a question of balance. Annu Rev Immunol 24, 257–286.PubMedCrossRefGoogle Scholar
  11. Di Santo, J. P., and Vosshenrich, C. A. (2006). Bone marrow versus thymic pathways of natural killer cell development. Immunol Rev 214, 35–46.PubMedCrossRefGoogle Scholar
  12. Fernandez, N. C., Treiner, E., Vance, R. E., Jamieson, A. M., Lemieux, S., and Raulet, D. H. (2005). A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood 105, 4416–4423.PubMedCrossRefGoogle Scholar
  13. Freud, A. G. and Caligiuri, M. A. (2006). Human natural killer cell development. Immunol Rev 214, 56–72.PubMedCrossRefGoogle Scholar
  14. Freud, A. G., Becknell, B., Roychowdhury, S., Mao, H. C., Ferketich, A. K., Nuovo, G. J., Hughes, T. L., Marburger, T. B., Sung, J., Baiocchi, R. A., et al. (2005). A human CD34(+) subset resides in lymph nodes and differentiates into CD56bright natural killer cells. Immunity 22, 295–304.PubMedCrossRefGoogle Scholar
  15. Haller, O., Kiessling, R., Orn, A., and Wigzell, H. (1977). Generation of natural killer cells: an autonomous function of the bone marrow. J Exp Med 145, 1411–1416.PubMedCrossRefGoogle Scholar
  16. Hayakawa, Y. and Smyth, M. J. (2006). CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity. J Immunol 176, 1517–1524.PubMedGoogle Scholar
  17. Huntington, N. D., Vosshenrich, C. A., and Di Santo, J. P. (2007). Developmental pathways that generate natural-killer-cell diversity in mice and humans. Nat Rev Immunol 7, 703–714.PubMedCrossRefGoogle Scholar
  18. Karre, K., Ljunggren, H. G., Piontek, G., and Kiessling, R. (1986). Selective rejection of H-2- deficient lymphoma variants suggests alternative immune defence strategy. Nature 319, 675–678.PubMedCrossRefGoogle Scholar
  19. Kim, N., Saudemont, A., Webb, L., Camps, M., Ruckle, T., Hirsch, E., Turner, M., and Colucci, F. (2007). The p110delta catalytic isoform of PI3K is a key player in NK-cell development and cytokine secretion. Blood 110, 3202–3208.PubMedCrossRefGoogle Scholar
  20. Kim, S., Poursine-Laurent, J., Truscott, S. M., Lybarger, L., Song, Y. J., Yang, L., French, A. R., Sunwoo, J. B., Lemieux, S., Hansen, T. H., and Yokoyama, W. M. (2005). Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436, 709–713.PubMedCrossRefGoogle Scholar
  21. Koopman, L. A., Kopcow, H. D., Rybalov, B., Boyson, J. E., Orange, J. S., Schatz, F., Masch, R., Lockwood, C. J., Schachter, A. D., Park, P. J., and Strominger, J. L. (2003). Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J Exp Med 198, 1201–1212.PubMedCrossRefGoogle Scholar
  22. Kumar, V. and McNerney, M. E. (2005). A new self: MHC-class-I-independent natural-killer-cell self-tolerance. Nat Rev Immunol 5, 363–374.CrossRefGoogle Scholar
  23. Lanier, L. L. (2005). NK cell recognition. Annu Rev Immunol 23, 225–274.PubMedCrossRefGoogle Scholar
  24. Lanier, L. L., Le, A. M., Civin, C. I., Loken, M. R., and Phillips, J. H. (1986). The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol 136, 4480–4486.PubMedGoogle Scholar
  25. Lee, K. N., Kang, H. S., Jeon, J. H., Kim, E. M., Yoon, S. R., Song, H., Lyu, C. Y., Piao, Z. H., Kim, S. U., Han, Y. H., et al. (2005). VDUP1 is required for the development of natural killer cells. Immunity 22, 195–208.PubMedCrossRefGoogle Scholar
  26. Lucas, M., Schachterle, W., Oberle, K., Aichele, P., and Diefenbach, A. (2007). Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity 26, 503–517.PubMedCrossRefGoogle Scholar
  27. Moffett, A. and Loke, C. (2006). Immunology of placentation in eutherian mammals. Nat Rev Immunol 6, 584–594.PubMedCrossRefGoogle Scholar
  28. Paffaro, V. A., Jr., Bizinotto, M. C., Joazeiro, P. P., and Yamada, A. T. (2003). Subset classification of mouse uterine natural killer cells by DBA lectin reactivity. Placenta 24, 479–488.PubMedCrossRefGoogle Scholar
  29. Rosmaraki, E. E., Douagi, I., Roth, C., Colucci, F., Cumano, A., and Di Santo, J. P. (2001). Identification of committed NK cell progenitors in adult murine bone marrow. Eur J Immunol 31, 1900–1909.PubMedCrossRefGoogle Scholar
  30. Ruggeri, L., Capanni, M., Urbani, E., Perruccio, K., Shlomchik, W. D., Tosti, A., Posati, S., Rogaia, D., Frassoni, F., Aversa, F., et al. (2002). Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295, 2097–2100.PubMedCrossRefGoogle Scholar
  31. Salcedo, M., Colucci, F., Dyson, P. J., Cotterill, L. A., Lemonnier, F. A., Kourilsky, P., Di Santo, J. P., Ljunggren, H. G., and Abastado, J. P. (2000). Role of Qa-1(b)-binding receptors in the specificity of developing NK cells. Eur J Immunol 30, 1094–1101.PubMedCrossRefGoogle Scholar
  32. Samson, S. I., Richard, O., Tavian, M., Ranson, T., Vosshenrich, C. A., Colucci, F., Buer, J., Grosveld, F., Godin, I., and Di Santo, J. P. (2003). GATA-3 promotes maturation, IFN-gamma production, and liver-specific homing of NK cells. Immunity 19, 701–711.PubMedCrossRefGoogle Scholar
  33. Seaman, W. E., Gindhart, T. D., Greenspan, J. S., Blackman, M. A., and Talal, N. (1979). Natural killer cells, bone, and the bone marrow: studies in estrogen-treated mice and in congenitally osteopetrotic (mi/mi) mice. J Immunol 122, 2541–2547.PubMedGoogle Scholar
  34. Sivori, S., Falco, M., Marcenaro, E., Parolini, S., Biassoni, R., Bottino, C., Moretta, L., and Moretta, A. (2002). Early expression of triggering receptors and regulatory role of 2B4 in human natural killer cell precursors undergoing in vitro differentiation. Proc Natl Acad Sci USA 99, 4526–4531.PubMedCrossRefGoogle Scholar
  35. Tassi, I., Cella, M., Gilfillan, S., Turnbull, I., Diacovo, T. G., Penninger, J. M., and Colonna, M. (2007). p110gamma and p110delta phosphoinositide 3-kinase signaling pathways synergize to control development and functions of murine NK cells. Immunity 27, 214–227.PubMedCrossRefGoogle Scholar
  36. Vivier, E., Nunes, J. A., and Vely, F. (2004). Natural killer cell signaling pathways. Science 306, 1517–1519.PubMedCrossRefGoogle Scholar
  37. Vosshenrich, C. A., Ranson, T., Samson, S. I., Corcuff, E., Colucci, F., Rosmaraki, E. E., and Di Santo, J. P. (2005a). Roles for common cytokine receptor gamma-chain-dependent cytokines in the generation, differentiation, and maturation of NK cell precursors and peripheral NK cells in vivo. J Immunol 174, 1213–1221.Google Scholar
  38. Vosshenrich, C. A., Samson-Villeger, S. I., and Di Santo, J. P. (2005b). Distinguishing features of developing natural killer cells. Curr Opin Immunol 17, 151–158.CrossRefGoogle Scholar
  39. Vosshenrich, C. A., Garcia-Ojeda, M. E., Samson-Villeger, S. I., Pasqualetto, V., Enault, L., Richard-Le Goff, O., Corcuff, E., Guy-Grand, D., Rocha, B., Cumano, al. (2006). A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127. Nat Immunol 7, 1217–1224.PubMedCrossRefGoogle Scholar
  40. Yadi, H., Burke, S., Madeja, Z., Hemberger, M., Moffett, A., Colucci, F. (2008). Unique receptor repertoire in mouse uterine NK cells. J. Immunol 181:6140–6147.PubMedGoogle Scholar
  41. Yokoyama, W. M., Kim, S., and French, A. R. (2004). The dynamic life of natural killer cells. Annu Rev Immunol 22, 405–429.PubMedCrossRefGoogle Scholar
  42. Zompi, S. and Colucci, F. (2005). Anatomy of a murder — signal transduction pathways leading to activation of natural killer cells. Immunol Lett 97, 31–39.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Lymphocyte Signalling and Development LaboratoryThe Babraham InstituteCambridgeUK

Personalised recommendations