Development of Megakaryocytes


Megakaryocytes (MKs) comprise a rare population of bone marrow cells, responsible for the production of platelets. MKs are derived from hematopoietic stem cells and share some common progenitors with the erythroid lineage. Through a partially elucidated interplay of transcription and growth factors, cells committed to the MK lineage are formed. Diploid MKs undergo multiple rounds of endomitosis, including aborted mitosis and cytokinesis. The mediators of endomitosis include cyclins, proteins involved in mitosis and cytokinesis, and other yet unrecognized proteins. Several signaling pathways are activated during endomitosis but their precise role remains largely uncharacterized. Endomitosis leads to high states of ploidy, which are accompanied by a cytoplasmatic volume increase. During the final stages of the MK life cycle biogenesis of platelets occurs. The precise mechanism of this aspect remained controversial for many years, but the implementation of sophisticated imaging modalities has gradually elucidated the process of proplatelet formation. Several disorders have been described affecting MK and platelet physiology. For some of them, the molecular pathology has been elucidated. Translational research has led to the development of thrombopoietic agents that are engineered to overcome changes in platelet levels associated with these states. In this chapter, we discuss key aspects of MK physiology and structure and we explore the molecular pathways governing these fascinating cells under normal and some pathological conditions.


Polycythemia Vera Platelet Production Thrombopoietin Receptor Megakaryocytic Differentiation Transient Myeloproliferative Disorder 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, G. B., D. T. Scadden (2006). “The hematopoietic stem cell in its place.”Nat Immunol 7(4): 333–337.PubMedCrossRefGoogle Scholar
  2. Adolfsson, J., R. Mansson, et al. (2005). “Identification of Flt3 + lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment.”Cell 121(2): 295–306.PubMedCrossRefGoogle Scholar
  3. Akashi, K., D. Traver, et al. (2000). “A clonogenic common myeloid progenitor that gives rise to all myeloid lineages.”Nature 404(6774): 193–197.PubMedCrossRefGoogle Scholar
  4. Akkerman, J. W. (2006). “Thrombopoietin and platelet function.”Semin Thromb Hemost 32(3): 295–304.PubMedCrossRefGoogle Scholar
  5. Altieri, D. C. (2006). “The case for survivin as a regulator of microtubule dynamics and cell-death decisions.”Current Opinion in Cell Biology 18(6): 609–615.PubMedCrossRefGoogle Scholar
  6. Andonegui, G., S. M. Kerfoot, et al. (2005). “Platelets express functional Toll-like receptor-4 ”Blood 106(7): 2417–2423.PubMedCrossRefGoogle Scholar
  7. Uren, A. G., L. Wong, M. Pakusch, K. J. Fowler, F. J. Burrows, D. L. Vaux, K. H. Choo (2000). “ Survivin and the inner centromere protein INCENP show similar cell-cycle localization and gene knockout phenotype.”Current Biology 10(21): 1319–1328.PubMedCrossRefGoogle Scholar
  8. Aravind, L., E. V. Koonin (2000). “SAP — a putative DNA-binding motif involved in chromosomal organization.”Trends Biochem Sci 25(3): 112–114.PubMedCrossRefGoogle Scholar
  9. Arber, D. A. (2001). “Realistic pathologic classification of acute myeloid leukemias.”Am J Clin Pathol 115(4): 552–560.PubMedCrossRefGoogle Scholar
  10. Athanasiou, M., P. A. Clausen, et al. (1996). “Increased expression of the ETS-related transcription factor FLI-1/ERGB correlates with and can induce the megakaryocytic phenotype.”Cell Growth Differ 7(11): 1525–1534.PubMedGoogle Scholar
  11. Avecilla, S. T., K. Hattori, et al. (2004). “Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis.”Nat Med 10(1): 64–71.PubMedCrossRefGoogle Scholar
  12. Baker, S. J., S. G. Rane, et al. (2007). “Hematopoietic cytokine receptor signaling.”Oncogene 26(47): 6724–6737.PubMedCrossRefGoogle Scholar
  13. Balduini, C. L., A. Savoia (2004). “Inherited thrombocytopenias: molecular mechanisms.”Semin Thromb Hemost 30(5): 513–523.PubMedCrossRefGoogle Scholar
  14. Ballmaier, M., M. Germeshausen, et al. (2001). “c-mpl mutations are the cause of congenital amegakaryocytic thrombocytopenia.”Blood 97(1): 139–146.PubMedCrossRefGoogle Scholar
  15. Barr, F. A., U. Gruneberg (2007). “Cytokinesis: placing and making the final cut.”Cell 131(5): 847–860.PubMedCrossRefGoogle Scholar
  16. Beeton, C. A., S. Bord, et al. (2006). “Osteoclast formation and bone resorption are inhibited by megakaryocytes.”Bone 39(5): 985–990.PubMedCrossRefGoogle Scholar
  17. Begley, C. G., R. L. Basser (2000). “Biologic and structural differences of thrombopoietic growth factors.”Semin Hematol 37(2 Suppl 4): 19–27.PubMedCrossRefGoogle Scholar
  18. Bennett, J. M., D. Catovsky, et al. (1985). “Criteria for the diagnosis of acute leukemia of megakaryo-cyte lineage (M7). A report of the French-American-British Cooperative Group.”Ann Intern Med 103(3): 460–462.PubMedGoogle Scholar
  19. Bernstein, J., N. Dastugue, et al. (2000). “Nineteen cases of the t(1;22)(p13;q13) acute megakaryblas-tic leukaemia of infants/children and a review of 39 cases: report from a t(1;22) study group.”Leukemia 14(1): 216–218.PubMedCrossRefGoogle Scholar
  20. Bloom, J., F. R. Cross (2007). “Multiple levels of cyclin specificity in cell-cycle control.”Nat Rev Mol Cell Biol 8(2): 149–160.PubMedCrossRefGoogle Scholar
  21. Branehog, I., B. Ridell, et al. (1975). “Megakaryocyte quantifications in relation to thrombokinetics in primary thrombocythaemia and allied diseases.”Scand. J. Haematol. 15(5): 321–332.PubMedGoogle Scholar
  22. Brass, L. F. (2005). “Did dinosaurs have megakaryocytes? New ideas about platelets and their progenitors.”J Clin Invest 115(12): 3329–3331.PubMedCrossRefGoogle Scholar
  23. Briddell, R. A., J. E. Brandt, et al. (1989). “Characterization of the human burst-forming unit-megakaryocyte.”Blood 74(1): 145–151.PubMedGoogle Scholar
  24. Bruno, E., L. J. Murray, et al. (1996). “Detection of a primitive megakaryocyte progenitor cell in human fetal bone marrow.”Exp Hematol 24(4): 552–558.PubMedGoogle Scholar
  25. Carver-Moore, K., H. E. Broxmeyer, et al. (1996). “Low levels of erythroid and myeloid progenitors in thrombopoietin-and c-mpl-deficient mice.”Blood 88(3): 803–808.PubMedGoogle Scholar
  26. Chang, A. N., A. B. Cantor, et al. (2002). “GATA-factor dependence of the multitype zinc-finger protein FOG-1 for its essential role in megakaryopoiesis.”Proc Natl Acad Sci USA 99(14): 9237–9242.PubMedCrossRefGoogle Scholar
  27. Chang, Y., D. Bluteau, et al. (2007). “From hematopoietic stem cells to platelets.”J Thromb Haemost5 Suppl1: 318–327.CrossRefGoogle Scholar
  28. Cheng, T., H. Shen, et al. (1996). “Temporal mapping of gene expression levels during the differentiation of individual primary hematopoietic cells.”Proc Natl Acad Sci USA 93(23): 13158–13163.PubMedCrossRefGoogle Scholar
  29. Ciurea, S. O., R. Hoffman (2007). “Cytokines for the treatment of thrombocytopenia.”Semin Hematol 44(3): 166–182.PubMedCrossRefGoogle Scholar
  30. Crispino, J. D. (2005). “GATA1 in normal and malignant hematopoiesis.”Semin Cell Dev Biol 16(1): 137–147.PubMedCrossRefGoogle Scholar
  31. Crow, C. E., N. E. Fox, et al. (2001). “Kinetics of endomitosis in primary murine megakaryocytes.”J Cell Physiol 188(3): 291–303.CrossRefGoogle Scholar
  32. Dahlen, D. D., V. C. Broudy, et al. (2003). “Internalization of the thrombopoietin receptor is regulated by 2 cytoplasmic motifs.”Blood 102(1): 102–108.PubMedCrossRefGoogle Scholar
  33. Debili, N., F. Wendling, et al. (1995). “The Mpl-ligand or thrombopoietin or megakaryocyte growth and differentiative factor has both direct proliferative and differentiative activities on human megakaryocyte progenitors.”Blood 86(7): 2516–2525.PubMedGoogle Scholar
  34. Debili, N., L. Coulombel, et al. (1996). “Characterization of a bipotent erythro-megakaryocytic progenitor in human bone marrow.”Blood 88(4): 1284–1296.PubMedGoogle Scholar
  35. De Botton, S., S. Sabri, et al. (2002). “Platelet formation is the consequence of caspase activation within megakaryocytes.”Blood 100(4): 1310–1317.PubMedCrossRefGoogle Scholar
  36. de Jong, J. L., L. I. Zon (2005). “Use of the zebrafish system to study primitive and definitive hematopoiesis.”Annu Rev Genet 39: 481–501.PubMedCrossRefGoogle Scholar
  37. Deutsch, V. R., A. Tomer (2006). “Megakaryocyte development and platelet production.”Br J Haematol 134(5): 453–466.PubMedCrossRefGoogle Scholar
  38. Drachman, J. G. (2004). “Inherited thrombocytopenia: when a low platelet count does not mean ITP.”Blood 103(2): 390–398.PubMedCrossRefGoogle Scholar
  39. Drachman, J. G., K. Kaushansky (1997). “Dissecting the thrombopoietin receptor: functional elements of the Mpl cytoplasmic domain.”Proc Natl Acad Sci USA 94(6): 2350–2355.PubMedCrossRefGoogle Scholar
  40. Du, X. X., T. Neben, et al. (1993). “Effects of recombinant human interleukin-11 on hematopoietic reconstitution in transplant mice: acceleration of recovery of peripheral blood neutrophils and platelets.”Blood 81(1): 27–34.PubMedGoogle Scholar
  41. Duncan, A. W., F. M. Rattis, et al. (2005). “Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance.”Nat Immunol 6(3): 314–322.PubMedCrossRefGoogle Scholar
  42. Erickson-Miller, C. L., E. DeLorme, et al. (2005). “Discovery and characterization of a selective, nonpeptidyl thrombopoietin receptor agonist.”Exp Hematol 33(1): 85–93.PubMedCrossRefGoogle Scholar
  43. Falik-Zaccai, T. C., Y. Anikster, et al. (2001). “A new genetic isolate of gray platelet syndrome (GPS): clinical, cellular, and hematologic characteristics.”Mol Genet Metab 74(3): 303–313.PubMedCrossRefGoogle Scholar
  44. Favier, R., K. Jondeau, et al. (2003). “Paris-Trousseau syndrome: clinical, hematological, molecular data of ten new cases.”Thromb Haemost 90(5): 893–897.PubMedGoogle Scholar
  45. Feese, M. D., T. Tamada, et al. (2004). “Structure of the receptor-binding domain of human throm-bopoietin determined by complexation with a neutralizing antibody fragment.”Proc Natl Acad Sci USA 101(7): 1816–1821.PubMedCrossRefGoogle Scholar
  46. Fielder, P. J., A. L. Gurney, et al. (1996). “Regulation of thrombopoietin levels by c-mpl-mediated binding to platelets.”Blood 87(6): 2154–2161.PubMedGoogle Scholar
  47. Fock, E. L., F. Yan, et al. (2008). “NF-E2-mediated enhancement of megakaryocytic differentiation and platelet production in vitro and in vivo.”Exp Hematol 36(1): 78–92.PubMedCrossRefGoogle Scholar
  48. Folkman, J. (2007). “Angiogenesis: an organizing principle for drug discovery?”Nat Rev Drug Discov 6(4): 273–286.PubMedCrossRefGoogle Scholar
  49. Forestier, F., F. Daffos, et al. (1991). “Developmental hematopoiesis in normal human fetal blood.”Blood 77(11): 2360–2363.PubMedGoogle Scholar
  50. Fukuda, S., L. M. Pelus (2006). “Survivin, a cancer target with an emerging role in normal adult tissues.” Mol Cancer Ther 5(5): 1087–1098.PubMedCrossRefGoogle Scholar
  51. Gaikwad, A., J. T. Prchal (2007). “Study of two tyrosine kinase inhibitors on growth and signal transduction in polycythemia vera.” Exp Hematol 35(11): 1647–1656.PubMedCrossRefGoogle Scholar
  52. Gainsford, T., A. W. Roberts, et al. (1998). “Cytokine production and function in cQQQmplQQQdeficient mice: no physiologic role for interleukinQQQ3 in residual megakaryocyte and platelet production.” Blood 91(8): 2745–2752.PubMedGoogle Scholar
  53. Gainsford, T., H. Nandurkar, et al. (2000). “The residual megakaryocyte and platelet production in cQQQmplQQQdeficient mice is not dependent on the actions of interleukinQQQ6, interleukinQQQ11, or leukemia inhibitory factor.” Blood 95(2): 528–534.PubMedGoogle Scholar
  54. Ganem, N. J., Z. Storchova, et al. (2007). “Tetraploidy, aneuploidy and cancer.” Curr Opin Genet Dev 17(2): 157–162.PubMedCrossRefGoogle Scholar
  55. Garimella, R., M. A. Kacena, et al. (2007). “Expression of bone morphogenetic proteins and their receptors in the bone marrow megakaryocytes of GATAQQQ1(low) mice: a possible role in osteosclerosis.” J Histochem Cytochem 55(7): 745–752.PubMedCrossRefGoogle Scholar
  56. Ge, Y., T. L. Jensen, et al. (2004). “The role of cytidine deaminase and GATA1 mutations in the increased cytosine arabinoside sensitivity of Down syndrome myeloblasts and leukemia cell lines.” Cancer Res 64(2): 728–735.PubMedCrossRefGoogle Scholar
  57. Geddis, A. E. (2006). “Inherited thrombocytopenia: congenital amegakaryocytic thrombocytopenia and thrombocytopenia with absent radii.” Semin Hematol 43(3): 196–203.PubMedCrossRefGoogle Scholar
  58. Geddis, A. E., K. Kaushansky (2004). “Megakaryocytes express functional AuroraQQQB kinase in endomitosis.” Blood 104(4): 1017–1024.PubMedCrossRefGoogle Scholar
  59. Geddis, A. E., K. Kaushansky (2006). “Endomitotic megakaryocytes form a midzone in anaphase but have a deficiency in cleavage furrow formation.” Cell Cycle 5(5): 538–545.PubMedGoogle Scholar
  60. Geddis, A. E., N. E. Fox, et al. (2006). “The Mpl receptor expressed on endothelial cells does not contribute significantly to the regulation of circulating thrombopoietin levels.” Exp Hematol 34(1): 82–86.PubMedCrossRefGoogle Scholar
  61. Geddis, A. E., N. E. Fox, et al. (2007). “Endomitotic megakaryocytes that form a bipolar spindle exhibit cleavage furrow ingression followed by furrow regression.” Cell Cycle 6(4): 455–460.PubMedGoogle Scholar
  62. Geng, Y., Q. Yu, et al. (2003). “Cyclin E ablation in the mouse.” Cell 114(4): 431–443.PubMedCrossRefGoogle Scholar
  63. Giammona, L. M., P. G. Fuhrken, et al. (2006). “Nicotinamide (vitamin B3) increases the polyploidisaQQQtion and proplatelet formation of cultured primary human megakaryocytes.” Br J Haematol 135(4): 554–566.PubMedCrossRefGoogle Scholar
  64. Glover, D. M., H. Ohkura, et al. (1996). “Polo kinase: the choreographer of the mitotic stage?” J Cell Biol 135(6, Part 2): 1681–1684.PubMedCrossRefGoogle Scholar
  65. Gnatenko, D. V., P. L. Perrotta, et al. (2006). “Proteomic approaches to dissect platelet function: half the story.” Blood 108(13): 3983–3991.PubMedCrossRefGoogle Scholar
  66. Goerttler, P. S., C. Kreutz, et al. (2005). “Gene expression profiling in polycythaemia vera: overQQQexpression of transcription factor NFQQQE2.” Br J Haematol 129(1): 138–150.PubMedCrossRefGoogle Scholar
  67. Goncalves, F., C. Lacout, et al. (1997). “Thrombopoietin does not induce lineageQQQrestricted commitment of MplQQQR expressing pluripotent progenitors but permits their complete erythroid and megakaryocytic differentiation.” Blood 89(10): 3544–3553.PubMedGoogle Scholar
  68. Greenbaum, M. P., L. Ma, et al. (2007). “Conversion of midbodies into germ cell intercellular bridges.” Dev Biol 305(2): 389–396.PubMedCrossRefGoogle Scholar
  69. Guerriero, R., I. Parolini, et al. (2006). “Inhibition of TPOQQQinduced MEK or mTOR activity induces opposite effects on the ploidy of human differentiating megakaryocytes.” J Cell Sci 119 (Part 4): 744–752.PubMedCrossRefGoogle Scholar
  70. Gurbuxani, S., Y. Xu, et al. (2005). “Differential requirements for survivin in hematopoietic cell development.” Proc Natl Acad Sci USA 102(32): 11480–11485.PubMedCrossRefGoogle Scholar
  71. Gurney, A. L., W. J. Kuang, et al. (1995a). “Genomic structure, chromosomal localization, and conserved alternative splice forms of thrombopoietin.” Blood 85(4): 981–988.Google Scholar
  72. Gurney, A. L., S. C. Wong, et al. (1995b). “Distinct regions of cQQQMpl cytoplasmic domain are coupled to the JAKQQQSTAT signal transduction pathway and Shc phosphorylation.” Proc Natl Acad Sci USA 92(12): 5292–5296.CrossRefGoogle Scholar
  73. Hart, A., F. Melet, et al. (2000). “FliQQQ1 is required for murine vascular and megakaryocytic development and is hemizygously deleted in patients with thrombocytopenia.” Immunity 13(2): 167–177.PubMedCrossRefGoogle Scholar
  74. Hartwig, J. H., J. E. Italiano, Jr. (2003). “The birth of the platelet.” J Thromb Haemost 1(7): 1580–1586.PubMedCrossRefGoogle Scholar
  75. Hartwig, J. H., J. E. Italiano, Jr. (2006). “Cytoskeletal mechanisms for platelet production.” Blood Cells Mol Dis 36(2): 99–103.PubMedCrossRefGoogle Scholar
  76. Healy, A. M., M. D. Pickard, et al. (2006). “Platelet expression profiling and clinical validation of myeloidQQQrelated proteinQQQ14 as a novel determinant of cardiovascular events.” Circulation 113(19): 2278–2284.PubMedCrossRefGoogle Scholar
  77. Heits, F., M. Stahl, et al. (1999). “Elevated serum thrombopoietin and interleukinQQQ6 concentrations in thrombocytosis associated with inflammatory bowel disease.” J Interferon Cytokine Res 19(7): 757–760.PubMedCrossRefGoogle Scholar
  78. Hirasawa, R., R. Shimizu, et al. (2002). “Essential and instructive roles of GATA factors in eosinophil development.” J Exp Med 195(11): 1379–1386.PubMedCrossRefGoogle Scholar
  79. Hitchcock, I. S., T. M. Skerry, et al. (2003). “NMDA receptorQQQmediated regulation of human megakaryocytopoiesis.” Blood 102(4): 1254–1259.PubMedCrossRefGoogle Scholar
  80. Huang, H., D. J. Tindall (2007). “Dynamic FoxO transcription factors.” J Cell Sci 120 (Part 15): 2479–2487.PubMedCrossRefGoogle Scholar
  81. IancuQQQRubin, C., C. A. Nasrallah, et al. (2005). “Stathmin prevents the transition from a normal to an endomitotic cell cycle during megakaryocytic differentiation.” Cell Cycle 4(12): 1774–1782.Google Scholar
  82. Ichikawa, M., T. Asai, et al. (2004). “AMLQQQ1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis.” Nat Med 10(3): 299–304.PubMedCrossRefGoogle Scholar
  83. Ikonomi, P., C. E. Rivera, et al. (2000). “Overexpression of GATAQQQ2 inhibits erythroid and promotes megakaryocyte differentiation.” Exp Hematol 28(12): 1423–1431.PubMedCrossRefGoogle Scholar
  84. Inoki, K., H. Ouyang, et al. (2005). “Signaling by target of rapamycin proteins in cell growth control.” Microbiol Mol Biol Rev 69(1): 79–100.PubMedCrossRefGoogle Scholar
  85. Italiano, J. E., Jr., P. Lecine, et al. (1999). “Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes.” J Cell Biol 147(6): 1299–1312.PubMedCrossRefGoogle Scholar
  86. Ito, T., Y. Ishida, et al. (1996). “Recombinant human cQQQMpl ligand is not a direct stimulator of proplatelet formation in mature human megakaryocytes.” Br J Haematol 94(2): 387–390.PubMedCrossRefGoogle Scholar
  87. Jackson, C. W. (1973). “Cholinesterase as a possible marker for early cells of the megakaryocytic series.” Blood 42(3): 413–421.PubMedGoogle Scholar
  88. Jackson, C. W., N. K. Hutson, et al. (1990a). “Megakaryocytopoiesis in man and laboratory animals. Conclusions derived from comparative studies and recently discovered animal models with megakaryocyte anomalies.” Prog Clin Biol Res 356: 11–23.Google Scholar
  89. Jackson, C. W., S. A. Steward, et al. (1990b). “An analysis of megakaryocytopoiesis in the C3H mouse: an animal model whose megakaryocytes have 32N as the modal DNA class.” Blood 76(4): 690–696.Google Scholar
  90. Jackson, H., N. Williams, et al. (1994). “Classes of primitive murine megakaryocytic progenitor cells.” Exp Hematol 22(10): 954–958.PubMedGoogle Scholar
  91. Jagerschmidt, A., V. Fleury, et al. (1998). “Human thrombopoietin structure—function relationships: identification of functionally important residues.” Biochem J 333 (Part 3): 729–734.PubMedGoogle Scholar
  92. Jelinek, J., Y. Oki, et al. (2005). “JAK2 mutation 1849G > T is rare in acute leukemias but can be found in CMML, Philadelphia chromosomeQQQnegative CML, and megakaryocytic leukemia.” Blood 106(10): 3370–3373.PubMedCrossRefGoogle Scholar
  93. Jones, D. L., A. J. Wagers (2008). “No place like home: anatomy and function of the stem cell niche.” Nat Rev Mol Cell Biol 9(1): 11–21.PubMedCrossRefGoogle Scholar
  94. Junt, T., H. Schulze, et al. (2007). “Dynamic visualization of thrombopoiesis within bone marrow.” Science 317(5845): 1767–1770.PubMedCrossRefGoogle Scholar
  95. Kacena, M. A., M. C. Horowitz (2006). “The role of megakaryocytes in skeletal homeostasis and rheumatoid arthritis.” Curr Opin Rheumatol 18(4): 405–410.PubMedCrossRefGoogle Scholar
  96. Kacena, M. A., C. M. Gundberg, et al. (2005). “Loss of the transcription factor p45 NFQQQE2 results in a developmental arrest of megakaryocyte differentiation and the onset of a high bone mass phenotype.” Bone 36(2): 215–223.PubMedCrossRefGoogle Scholar
  97. Kacena, M. A., C. M. Gundberg, et al. (2006a). “A reciprocal regulatory interaction between megakaryocytes, bone cells, and hematopoietic stem cells.” Bone 39(5): 978–984.CrossRefGoogle Scholar
  98. Kacena, M. A., T. Nelson, et al. (2006b). “MegakaryocyteQQQmediated inhibition of osteoclast development.” Bone 39(5): 991–999.CrossRefGoogle Scholar
  99. Kartsogiannis, V., H. Zhou, et al. (1999). “Localization of RANKL (receptor activator of NF kappa B ligand) mRNA and protein in skeletal and extraskeletal tissues.” Bone 25(5): 525–534.PubMedCrossRefGoogle Scholar
  100. Kato, T., A. Matsumoto, et al. (1998). “Native thrombopoietin: structure and function.” Stem Cells 16(5): 322–328.PubMedCrossRefGoogle Scholar
  101. Kaushansky, K. (1995). “Thrombopoietin: basic biology, clinical promise.” Int J Hematol 62(1): 7–15.PubMedCrossRefGoogle Scholar
  102. Kaushansky, K. (2005). “The molecular mechanisms that control thrombopoiesis.” J Clin Invest 115(12): 3339–3347.PubMedCrossRefGoogle Scholar
  103. Kaushansky, K., J. G. Drachman (2002). “The molecular and cellular biology of thrombopoietin: the primary regulator of platelet production.” Oncogene 21(21): 3359–3367.PubMedCrossRefGoogle Scholar
  104. Kaushansky, K., V. C. Broudy, et al. (1995). “Thrombopoietin, the Mp1 ligand, is essential for full megakaryocyte development.” Proc Natl Acad Sci USA 92(8): 3234–3238.PubMedCrossRefGoogle Scholar
  105. Kerrigan, S. W., M. Gaur, et al. (2004). “Caspase-12: a developmental link between G-protein-coupled receptors and integrin alphaIIbbeta3 activation.” Blood 104(5): 1327–1334.PubMedCrossRefGoogle Scholar
  106. Kiel, M. J., O. H. Yilmaz, et al. (2005). “SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells.” Cell 121(7): 1109–1121.PubMedCrossRefGoogle Scholar
  107. Kirito, K., K. Kaushansky (2006). “Transcriptional regulation of megakaryopoiesis: thrombopoie-tin signaling and nuclear factors.” Curr Opin Hematol 13(3): 151–156.PubMedCrossRefGoogle Scholar
  108. Kirito, K., M. Osawa, et al. (2002). “A functional role of Stat3 in in vivo megakaryopoiesis.” Blood 99(9): 3220–3227.PubMedCrossRefGoogle Scholar
  109. Kirito, K., N. Fox, et al. (2004). “Thrombopoietin induces HOXA9 nuclear transport in immature hematopoietic cells: potential mechanism by which the hormone favorably affects hematopoietic stem cells.” Mol Cell Biol 24(15): 6751–6762.PubMedCrossRefGoogle Scholar
  110. Klopocki, E., H. Schulze, et al. (2007). “Complex inheritance pattern resembling autosomal recessive inheritance involving a microdeletion in thrombocytopenia-absent radius syndrome.” Am J Hum Genet 80(2): 232–240.PubMedCrossRefGoogle Scholar
  111. Kosaki, G. (2005). “In vivo platelet production from mature megakaryocytes: does platelet release occur via proplatelets? ” Int J Hematol 81(3): 208–219.PubMedCrossRefGoogle Scholar
  112. Kosugi, S., Y. Kurata, et al. (1996). “Circulating thrombopoietin level in chronic immune throm-bocytopenic purpura.” Br J Haematol 93(3): 704–706.PubMedCrossRefGoogle Scholar
  113. Kotwaliwale, C., S. Biggins (2006). “Microtubule capture: a concerted effort.” Cell 127(6): 1105–1108.PubMedCrossRefGoogle Scholar
  114. Kretzschmar, H. A. (1993). “Human prion diseases (spongiform encephalopathies).” Arch Virol Suppl 7: 261–293.PubMedGoogle Scholar
  115. Kuter, D. J. (2007). “New thrombopoietic growth factors.” Blood 109(11): 4607–4616.PubMedCrossRefGoogle Scholar
  116. Kuter, D. J., C. G. Begley (2002). “Recombinant human thrombopoietin: basic biology and evaluation of clinical studies.” Blood 100(10): 3457–3469.PubMedCrossRefGoogle Scholar
  117. Kuter, D. J., R. D. Rosenberg (1995). “The reciprocal relationship of thrombopoietin (c-Mpl ligand) to changes in the platelet mass during busulfan-induced thrombocytopenia in the rabbit.” Blood 85(10): 2720–2730.PubMedGoogle Scholar
  118. Kuter, D. J., D. M. Gminski, et al. (1992). “Transforming growth factor beta inhibits megakaryocyte growth and endomitosis.” Blood 79(3): 619–626.PubMedGoogle Scholar
  119. Kuter, D. J., D. L. Beeler, et al. (1994). “The purification of megapoietin: a physiological regulator of megakaryocyte growth and platelet production.” Proc Natl Acad Sci USA 91(2 3) : 11104–11108.PubMedCrossRefGoogle Scholar
  120. Lam, L. T., C. Ronchini, et al. (2000). “Suppression of erythroid but not megakaryocytic differentiation of human K562 erythroleukemic cells by notch-1.” J Biol Chem 275(26): 19676–19684.PubMedCrossRefGoogle Scholar
  121. Lambert, M. P., L. Rauova, et al. (2007). “Platelet factor 4 is a negative autocrine in vivo regulator of megakaryopoiesis: clinical and therapeutic implications.” Blood 110(4): 1153–1160.PubMedCrossRefGoogle Scholar
  122. Lecine, P., V. Blank, et al. (1998). “Characterization of the hematopoietic transcription factor NF-E2 in primary murine megakaryocytes.” J Biol Chem 273(13): 7572–7578.PubMedCrossRefGoogle Scholar
  123. Lecine, P., J. E. Italiano, Jr., et al. (2000). “Hematopoietic-specific beta 1 tubulin participates in a pathway of platelet biogenesis dependent on the transcription factor NF-E2.” Blood 96(4): 1366–1373.PubMedGoogle Scholar
  124. Lens, S. M. A., G. Vader, et al. (2006). “The case for survivin as mitotic regulator.” Curr Opin Cell Biol 18(6): 616–622.PubMedCrossRefGoogle Scholar
  125. Levin, J., S. Ebbe (1994). “Why are recently published platelet counts in normal mice so low?” Blood 83(12): 3829–3831.PubMedGoogle Scholar
  126. Levine, R. F., K. C. Hazzard, et al. (1982). “The significance of megakaryocyte size.” Blood 60(5): 1122–1131.PubMedGoogle Scholar
  127. Li, R. (2007). “Cytokinesis in development and disease: variations on a common theme.” Cell Mol Life Sci 64(23): 3044–3058.PubMedCrossRefGoogle Scholar
  128. Li, Z., L. Li (2006). “Understanding hematopoietic stem-cell microenvironments.” Trends Biochem Sci 31(10): 589–595.PubMedCrossRefGoogle Scholar
  129. Li, Z., F. J. Godinho, et al. (2005). “Developmental stage-selective effect of somatically mutated leukemogenic transcription factor GATA1.” Nat Genet 37(6): 613–619.PubMedCrossRefGoogle Scholar
  130. Linden, H. M., K. Kaushansky (2000). “The glycan domain of thrombopoietin enhances its secretion.” Biochemistry 39(11): 3044–3051.PubMedCrossRefGoogle Scholar
  131. Lippert, E., M. Boissinot, et al. (2006). “The JAK2-V617F mutation is frequently present at diagnosis in patients with essential thrombocythemia and polycythemia vera.” Blood 108(6): 1865–1867.PubMedCrossRefGoogle Scholar
  132. Ma, Z., S. W. Morris, et al. (2001). “Fusion of two novel genes, RBM15 and MKL1, in the t(1;22) (p13;q13) of acute megakaryoblastic leukemia.” Nat Genet 28(3): 220–221.PubMedCrossRefGoogle Scholar
  133. MacGregor, I., J. Hope, et al. (1999). “Application of a time-resolved fluoroimmunoassay for the analysis of normal prion protein in human blood and its components.” Vox Sang 77(2): 88–96.PubMedCrossRefGoogle Scholar
  134. Malumbres, M., M. Barbacid (2001). “To cycle or not to cycle: a critical decision in cancer.” Nat Rev Cancer 1(3): 222–231.PubMedCrossRefGoogle Scholar
  135. Mandal, R. V., E. J. Mark, et al. (2007). “Megakaryocytes and platelet homeostasis in diffuse alveolar damage.” Exp Mol Pathol 83: 327–331.PubMedCrossRefGoogle Scholar
  136. Margolis, R. L., O. D. Lohez, et al. (2003). “G1 tetraploidy checkpoint and the suppression of tumorigenesis.” J Cell Biochem 88(4): 673–683.PubMedCrossRefGoogle Scholar
  137. Mattia, G., F. Vulcano, et al. (2002). “Different ploidy levels of megakaryocytes generated from peripheral or cord blood CD34+ cells are correlated with different levels of platelet release.” Blood 99(3): 888–897.PubMedCrossRefGoogle Scholar
  138. McCrann, D. J., H. G. Nguyen, et al. (2008a). “Vascular smooth muscle cell polyploidy: an adaptive or maladaptive response? ” J Cell Physiol 215: 588–592CrossRefGoogle Scholar
  139. McCrann, D. J., T. Yezefski, et al. (2008b). “Survivin overexpression alone does not alter meg-akaryocyte ploidy nor interfere with erythroid/megakaryocytic lineage development in transgenic mice.” Blood 111: 4092–4095CrossRefGoogle Scholar
  140. Mercher, T., M. B. Coniat, et al. (2001). “Involvement of a human gene related to the Drosophila spen gene in the recurrent t(1;22) translocation of acute megakaryocytic leukemia.” Proc Natl Acad Sci USA 98(10): 5776–5779.PubMedCrossRefGoogle Scholar
  141. Miller, J. L., A. Castella (1982). “Platelet-type von Willebrand's disease: characterization of a new bleeding disorder.” Blood 60(3): 790–794.PubMedGoogle Scholar
  142. Miller, J. S., Y. Soignier, et al. (2005). “Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer.” Blood 105(8): 3051–3057.PubMedCrossRefGoogle Scholar
  143. Miyakawa, Y., A. Oda, et al. (1995). “Recombinant thrombopoietin induces rapid protein tyrosine phosphorylation of Janus kinase 2 and Shc in human blood platelets.” Blood 86(1): 23–27.PubMedGoogle Scholar
  144. Moliterno, A. R., D. M. Williams, et al. (2004). “Mpl Baltimore: a thrombopoietin receptor polymorphism associated with thrombocytosis.” Proc Natl Acad Sci USA 101(31): 11444–11447.PubMedCrossRefGoogle Scholar
  145. Mori, M., J. Tsuchiyama, et al. (1993). “Proliferation, migration and platelet release by megakaryocytes in long-term bone marrow culture in collagen gel.” Cell Struct Funct 18(6): 409–417.PubMedCrossRefGoogle Scholar
  146. Moroy, T., C. Geisen (2004). “Cyclin E.” Int J Biochem Cell Biol 36(8): 1424–1439.PubMedCrossRefGoogle Scholar
  147. Muntean, A. G., L. Pang, et al. (2007). “Cyclin D-Cdk4 is regulated by GATA-1 and required for megakaryocyte growth and polyploidization.” Blood 109: 5199–5207.PubMedCrossRefGoogle Scholar
  148. Murata-Hori, M., M. Tatsuka, et al. (2002). “Probing the dynamics and functions of Aurora B kinase in living cells during mitosis and cytokinesis.” Mol. Biol. Cell 13(4): 1099–1108.PubMedCrossRefGoogle Scholar
  149. Musacchio, A., E. D. Salmon (2007). “The spindle-assembly checkpoint in space and time.” Nat Rev Mol Cell Biol 8(5): 379–393.PubMedCrossRefGoogle Scholar
  150. Muta, T., S. Iwanaga (1996). “The role of hemolymph coagulation in innate immunity.” Curr Opin Immunol 8(1): 41–47.PubMedCrossRefGoogle Scholar
  151. Nagata, Y., Y. Muro, et al. (1997). “Thrombopoietin-induced polyploidization of bone marrow megakaryocytes is due to a unique regulatory mechanism in late mitosis.” J. Cell Biol. 139(2): 449–457.PubMedCrossRefGoogle Scholar
  152. Nagler, A., V. R. Deutsch, et al. (1995). “Recombinant human interleukin-6 accelerates in-vitro megakaryocytopoiesis and platelet recovery post autologous peripheral blood stem cell transplantation.” Leuk Lymphoma 19(3–4): 343–349.PubMedGoogle Scholar
  153. Nakao, T., A. E. Geddis, et al. (2007). “PI3K/Akt/FOXO3a pathway contributes to thrombopoie-tin-induced proliferation of primary megakaryocytes in vitro and in vivo via modulation of p27(Kip1).” Cell Cycle 7(2): 257–266.PubMedGoogle Scholar
  154. Nakorn, T. N., T. Miyamoto, et al. (2003). “Characterization of mouse clonogenic megakaryocyte progenitors.” Proc Natl Acad Sci 100(1): 205–210.PubMedCrossRefGoogle Scholar
  155. Newland, A. (2007). “Thrombopoietin mimetic agents in the management of immune thrombocy-topenic purpura.” Semin Hematol 44(4 Suppl 5): S35–S45.PubMedCrossRefGoogle Scholar
  156. Ney, P. A., N. C. Andrews, et al. (1993). “Purification of the human NF-E2 complex: cDNA cloning of the hematopoietic cell-specific subunit and evidence for an associated partner.” Mol Cell Biol 13(9): 5604–5612.PubMedGoogle Scholar
  157. Nguyen, H. G., K. Ravid (2006). “Tetraploidy/aneuploidy and stem cells in cancer promotion: the role of chromosome passenger proteins.” J Cell Physiol 208(1): 12–22.PubMedCrossRefGoogle Scholar
  158. Nguyen, H. G., D. Chinnappan, et al. (2005). “Mechanism of Aurora-B degradation and its dependency on intact KEN and A-boxes: identification of an aneuploidy-promoting property.” Mol Cell Biol 25(12): 4977–4992.PubMedCrossRefGoogle Scholar
  159. Nurden, A. T., P. Nurden (2007a). “The gray platelet syndrome: clinical spectrum of the disease.” Blood Rev 21(1): 21–36.CrossRefGoogle Scholar
  160. Nurden, A. T., P. Nurden (2007b). “Inherited thrombocytopenias.” Haematologica 92(9): 1158–1164.CrossRefGoogle Scholar
  161. Oda, A., Y. Miyakawa, et al. (1996). “Thrombopoietin primes human platelet aggregation induced by shear stress and by multiple agonists.” Blood 87(11): 4664–4670.PubMedGoogle Scholar
  162. Onodera, K., J. A. Shavit, et al. (2000). “Perinatal synthetic lethality and hematopoietic defects in compound mafG::mafK mutant mice.” EMBO J 19(6): 1335–1345.PubMedCrossRefGoogle Scholar
  163. Orazi, A. (2007). “Histopathology in the diagnosis and classification of acute myeloid leukemia, myelodysplastic syndromes, and myelodysplastic/myeloproliferative diseases.” Pathobiology 74(2): 97–114.PubMedCrossRefGoogle Scholar
  164. Orkin, S. H. (1992). “GATA-binding transcription factors in hematopoietic cells.” Blood 80(3): 575–581.PubMedGoogle Scholar
  165. Pasquet, J. M., B. S. Gross, et al. (2000). “Thrombopoietin potentiates collagen receptor signaling in platelets through a phosphatidylinositol 3-kinase-dependent pathway.” Blood 95(11): 3429–3434.PubMedGoogle Scholar
  166. Patel, S. R., J. H. Hartwig, et al. (2005a). “The biogenesis of platelets from megakaryocyte pro-platelets.” J. Clin. Invest. 115(12): 3348–3354.CrossRefGoogle Scholar
  167. Patel, S. R., J. L. Richardson, et al. (2005b). “Differential roles of microtubule assembly and sliding in proplatelet formation by megakaryocytes106: 4076–4085.Google Scholar
  168. Peck-Radosavljevic, M., M. Wichlas, et al. (2000). “Thrombopoietin induces rapid resolution of thrombocytopenia after orthotopic liver transplantation through increased platelet production.” Blood 95(3): 795–801.PubMedGoogle Scholar
  169. Perry, M. J., K. A. Redding, et al. (2007). “Mice rendered severely deficient in megakaryocytes through targeted gene deletion of the thrombopoietin receptor c-Mpl have a normal skeletal phenotype.” Calcif Tissue Int 81(3): 224–231.PubMedCrossRefGoogle Scholar
  170. Poellinger, L., R. S. Johnson (2004). “HIF-1 and hypoxic response: the plot thickens.” Curr Opin Genet Dev 14(1): 81–85.PubMedCrossRefGoogle Scholar
  171. Quesenberry, P. J., J. N. Ihle, et al. (1985). “The effect of interleukin 3 and GM-CSA-2 on megakaryocyte and myeloid clonal colony formation.” Blood 65(1): 214–217.PubMedGoogle Scholar
  172. Raslova, H., E. Komura, et al. (2004). “FLI1 monoallelic expression combined with its hemizygous loss underlies Paris-Trousseau/Jacobsen thrombopenia.” J Clin Invest 114(1): 77–84.PubMedGoogle Scholar
  173. Raslova, H., V. Baccini, et al. (2006). “Mammalian target of rapamycin (mTOR) regulates both proliferation of megakaryocyte progenitors and late stages of megakaryocyte differentiation.” Blood 107(6): 2303–2310.PubMedCrossRefGoogle Scholar
  174. Raslova, H., A. Kauffmann, et al. (2007). “Interrelation between polyploidization and megakaryocyte differentiation: a gene profiling approach.” Blood 109(8): 3225–3234.PubMedCrossRefGoogle Scholar
  175. Ravid, K., T. Doi, et al. (1991) “Transcriptional regulation of the rat platelet factor 4 gene: interaction between an enhancer/silencer domain and the GATA site.” Mol Cell Biol 11(12): 6116–6127.PubMedGoogle Scholar
  176. Ravid, K., J. Lu, et al. (2002) “Roads to polyploidy: the megakaryocyte example.” J Cell Physiol 190(1): 7–20.PubMedCrossRefGoogle Scholar
  177. Ribeiro, R. C., M. S. Oliveira, et al. (1993) “Acute megakaryoblastic leukemia in children and adolescents: a retrospective analysis of 24 cases.” Leuk Lymphoma 10(4–5): 299–306.PubMedGoogle Scholar
  178. Rojnuckarin, P., K. Kaushansky (2001) “Actin reorganization and proplatelet formation in murine megakaryocytes: the role of protein kinase calpha.” Blood 97(1): 154–161.PubMedCrossRefGoogle Scholar
  179. Rouyez, M. C., C. Boucheron, et al. (1997) “Control of thrombopoietin-induced megakaryocytic differentiation by the mitogen-activated protein kinase pathway.” Mol Cell Biol 17(9): 4991–5000.PubMedGoogle Scholar
  180. Roy, L., P. Coullin, et al. (2001) “Asymmetrical segregation of chromosomes with a normal metaphase/anaphase checkpoint in polyploid megakaryocytes.” Blood 97(8): 2238–2247.PubMedCrossRefGoogle Scholar
  181. Royer, Y., J. Staerk, et al. (2005) “Janus kinases affect thrombopoietin receptor cell surface localization and stability.” J Biol Chem 280(29): 27251–27261.PubMedCrossRefGoogle Scholar
  182. Rubin, C. I., D. L. French, et al. (2003) “Stathmin expression and megakaryocyte differentiation: a potential role in polyploidy.” Exp Hematol 31(5): 389–397.PubMedCrossRefGoogle Scholar
  183. Ruchaud, S., M. Carmena, et al. (2007) “Chromosomal passengers: conducting cell division.” Nat Rev Mol Cell Biol 8(10): 798–812.PubMedCrossRefGoogle Scholar
  184. Sakamaki, S., Y. Hirayama, et al. (1999) “Transforming growth factor-beta1 (TGF-beta1) induces thrombopoietin from bone marrow stromal cells, which stimulates the expression of TGF-beta receptor on megakaryocytes and, in turn, renders them susceptible to suppression by TGF-beta itself with high specificity.” Blood 94(6): 1961–1970.PubMedGoogle Scholar
  185. Samii, K., E. Pasteur (1998). “Images in hematology. Emperipolesis.” Am J Hematol 59(1): 64.PubMedCrossRefGoogle Scholar
  186. Sauer, K., J. A. Knoblich, et al. (1995). “Distinct modes of cyclin E/cdc2c kinase regulation and S-phase control in mitotic and endoreduplication cycles of Drosophila embryogenesis.” Genes Dev 9(11): 1327–1339.PubMedCrossRefGoogle Scholar
  187. Schipper, L. F., A. Brand, et al. (2003) “Differential maturation of megakaryocyte progenitor cells from cord blood and mobilized peripheral blood.” Exp Hematol 31(4): 324–330.PubMedCrossRefGoogle Scholar
  188. Schmitt, A., J. Guichard, et al. (2001) “Of mice and men: comparison of the ultrastructure of megakaryocytes and platelets.” Exp Hematol 29(11): 1295–1302.PubMedCrossRefGoogle Scholar
  189. Schulze, H., M. Korpal, et al. (2006) “Characterization of the megakaryocyte demarcation membrane system and its role in thrombopoiesis.” Blood 107(10): 3868–3875.PubMedCrossRefGoogle Scholar
  190. Scott, T., M. D. Owens (2008) “Thrombocytes respond to lipopolysaccharide through Toll-like receptor-4, and MAP kinase and NF- κ B pathways leading to expression of interleukin-6 and cyclooxygenase-2 with production of prostaglandin E2.” Mol Immunol 45(4): 1001–1008.PubMedCrossRefGoogle Scholar
  191. Seri, M., R. Cusano, et al. (2000) “Mutations in MYH9 result in the May-Hegglin anomaly, and Fechtner and Sebastian syndromes. The May-Heggllin/Fechtner Syndrome Consortium.” Nat Genet 26(1): 103–105.PubMedCrossRefGoogle Scholar
  192. Shivdasani, R. A., M. F. Rosenblatt, et al. (1995) “Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development.” Cell 81(5): 695–704.PubMedCrossRefGoogle Scholar
  193. Shivdasani, R. A., P. Fielder, et al. (1997a) “Regulation of the serum concentration of throm-bopoietin in thrombocytopenic NF-E2 knockout mice.” Blood 90(5): 1821–1827.Google Scholar
  194. Shivdasani, R. A., Y. Fujiwara, et al. (1997b) “A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development.” EMBO J 16(13): 3965–3973.+CrossRefGoogle Scholar
  195. Sipe, J. B., J. Zhang, et al. (2004) “Localization of bone morphogenetic proteins (BMPs)-2, −4, and −6 within megakaryocytes and platelets.” Bone 35(6): 1316–1322.PubMedCrossRefGoogle Scholar
  196. Snow, J. W., N. Abraham, et al. (2002) “STAT5 promotes multilineage hematolymphoid development in vivo through effects on early hematopoietic progenitor cells.” Blood 99(1): 95–101.PubMedCrossRefGoogle Scholar
  197. Solar, G. P., W. G. Kerr, et al. (1998) “Role of c-mpl in early hematopoiesis.” Blood 92(1): 4–10.PubMedGoogle Scholar
  198. Song, W. J., M. G. Sullivan, et al. (1999) “Haploinsufficiency of CBFA2 causes familial thrombocy-topenia with propensity to develop acute myelogenous leukaemia.” Nat Genet 23(2): 166–175.PubMedCrossRefGoogle Scholar
  199. Sonoda, Y., Y. Kuzuyama, et al. (1993). “Human interleukin-4 inhibits proliferation of meg-akaryocyte progenitor cells in culture.” Blood 81(3): 624–630.PubMedGoogle Scholar
  200. Staerk, J., C. Lacout, et al. (2006). “An amphipathic motif at the transmembrane-cytoplasmic junction prevents autonomous activation of the thrombopoietin receptor.” Blood 107(5): 1864–1871.PubMedCrossRefGoogle Scholar
  201. Starke, R., P. Harrison, et al. (2005). “The expression of prion protein (PrP(C)) in the megakaryo-cyte lineage.” J Thromb Haemost 3(6): 1266–1273.PubMedCrossRefGoogle Scholar
  202. Steensma, D. P., A. Tefferi (2002). “Cytogenetic and molecular genetic aspects of essential throm-bocythemia.” Acta Haematol 108(2): 55–65.PubMedCrossRefGoogle Scholar
  203. Straight, A. F., C. M. Field (2000). “Microtubules, membranes and cytokinesis.” Curr Biol 10(20): R760–R770.PubMedCrossRefGoogle Scholar
  204. Sumara, I., J. F. Gimenez-Abian, et al. (2004). “Roles of polo-like kinase 1 in the assembly of functional mitotic spindles.” Curr Biol 14(19): 1712–1722.PubMedCrossRefGoogle Scholar
  205. Sungaran, R., B. Markovic, et al. (1997). “Localization and regulation of thrombopoietin mRNa expression in human kidney, liver, bone marrow, and spleen using in situ hybridization.” Blood 89(1): 101–107.PubMedGoogle Scholar
  206. Sungaran, R., O. T. Chisholm, et al. (2000). “The role of platelet alpha-granular proteins in the regulation of thrombopoietin messenger RNA expression in human bone marrow stromal cells.” Blood 95(10): 3094–3101.PubMedGoogle Scholar
  207. Suva, L. J., E. Hartman, et al. (2008). “Platelet dysfunction and a high bone mass phenotype in a murine model of platelet-type von Willebrand disease.” Am J Pathol 172: 430–439.PubMedCrossRefGoogle Scholar
  208. Tablin, F., M. Castro, et al. (1990). “Blood platelet formation in vitro. The role of the cytoskeleton in megakaryocyte fragmentation.” J Cell Sci 97 (Part 1): 59–70.Google Scholar
  209. Tajika, K., H. Nakamura, et al. (2000). “Thrombopoietin can influence mature megakaryocytes to undergo further nuclear and cytoplasmic maturation.” Exp Hematol 28(2): 203–209.PubMedCrossRefGoogle Scholar
  210. Takahashi, S., T. Komeno, et al. (1998). “Role of GATA-1 in proliferation and differentiation of definitive erythroid and megakaryocytic cells in vivo.” Blood 92(2): 434–442.PubMedGoogle Scholar
  211. Tallman, M. S., D. Neuberg, et al. (2000). “Acute megakaryocytic leukemia: the Eastern Cooperative Oncology Group experience.” Blood 96(7): 2405–2411.PubMedGoogle Scholar
  212. Tanaka, M., J. Zheng, et al. (2004). “Differentiation status dependent function of FOG-1.” Genes Cells 9(12): 1213–1226.PubMedCrossRefGoogle Scholar
  213. Tavassoli, M., M. Aoki (1981). “Migration of entire megakaryocytes through the marrow–blood barrier.” Br J Haematol 48(1): 25–29.PubMedCrossRefGoogle Scholar
  214. Tavassoli, M., M. Aoki (1989). “Localization of megakaryocytes in the bone marrow.” Blood Cells 15(1): 3–14.PubMedGoogle Scholar
  215. Tepler, I., L. Elias, et al. (1996). “A randomized placebo-controlled trial of recombinant human interleukin-11 in cancer patients with severe thrombocytopenia due to chemotherapy.” Blood 87(9): 3607–3614.PubMedGoogle Scholar
  216. Tiwari, S., J. E. Italiano, Jr., et al. (2003). “A role for Rab27b in NF-E2-dependent pathways of platelet formation.” Blood 102(12): 3970–3979.PubMedCrossRefGoogle Scholar
  217. Tober, J., A. Koniski, et al. (2007). “The megakaryocyte lineage originates from hemangioblast precursors and is an integral component both of primitive and of definitive hematopoiesis.” Blood 109(4): 1433–1441.PubMedCrossRefGoogle Scholar
  218. Tober, J., K. E. McGrath, et al. (2008). “Primitive erythropoiesis and megakaryopoiesis in the yolk sac are independent of c-myb.” Blood 111(5): 2636–2639.PubMedCrossRefGoogle Scholar
  219. Tomer, A. (2004). “Human marrow megakaryocyte differentiation: multiparameter correlative analysis identifies von Willebrand factor as a sensitive and distinctive marker for early (2N and 4N) megakaryocytes.” Blood 104(9): 2722–2727.PubMedCrossRefGoogle Scholar
  220. Tsai, F. Y., G. Keller, et al. (1994). “An early haematopoietic defect in mice lacking the transcription factor GATA-2.” Nature 371(6494): 221–226.PubMedCrossRefGoogle Scholar
  221. Tsang, A. P., J. E. Visvader, et al. (1997). “FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation.” Cell 90(1): 109–119.PubMedCrossRefGoogle Scholar
  222. Tsang, A. P., Y. Fujiwara, et al. (1998). “Failure of megakaryopoiesis and arrested erythropoiesis in mice lacking the GATA-1 transcriptional cofactor FOG.” Genes Dev 12(8): 1176–1188.PubMedCrossRefGoogle Scholar
  223. Tulasne, D., T. Bori, et al. (2002). “Regulation of RAS in human platelets. Evidence that activation of RAS is not sufficient to lead to ERK1-2 phosphorylation.” Eur J Biochem 269(5): 1511–1517.PubMedCrossRefGoogle Scholar
  224. van Hensbergen, Y., L. F. Schipper, et al. (2006). “Ex vivo culture of human CD34+ cord blood cells with thrombopoietin (TPO) accelerates platelet engraftment in a NOD/SCID mouse model.” Exp Hematol 34(7): 943–950.PubMedCrossRefGoogle Scholar
  225. van Vugt, M. A., B. C. van de Weerdt, et al. (2004). “Polo-like kinase-1 is required for bipolar spindle formation but is dispensable for anaphase promoting complex/Cdc20 activation and initiation of cytokinesis.” J Biol Chem 279(35): 36841–36854.PubMedCrossRefGoogle Scholar
  226. Vannucchi, A. M., L. Bianchi, et al. (2005). “A pathobiologic pathway linking thrombopoietin, GATA-1, and TGF-beta1 in the development of myelofibrosis.” Blood 105(9): 3493–3501.PubMedCrossRefGoogle Scholar
  227. Vigon, I., J. P. Mornon, et al. (1992). “Molecular cloning and characterization of MPL, the human homolog of the v-mpl oncogene: identification of a member of the hematopoietic growth factor receptor superfamily.” Proc Natl Acad Sci USA 89(12): 5640–5644.PubMedCrossRefGoogle Scholar
  228. Villeval, J. L., K. Cohen-Solal, et al. (1997). “High thrombopoietin production by hematopoietic cells induces a fatal myeloproliferative syndrome in mice.” Blood 90(11): 4369–4383.PubMedGoogle Scholar
  229. von Hundelshausen, P., F. Petersen, et al. (2007). “Platelet-derived chemokines in vascular biology.” Thromb Haemost 97(5): 704–713.Google Scholar
  230. Walters, D. K., T. Mercher, et al. (2006). “Activating alleles of JAK3 in acute megakaryoblastic leukemia.” Cancer Cell 10(1): 65–75.PubMedCrossRefGoogle Scholar
  231. Wang, B., J. L. Nichol, et al. (2004). “Pharmacodynamics and pharmacokinetics of AMG 531, a novel thrombopoietin receptor ligand.” Clin Pharmacol Ther 76(6): 628–638.PubMedCrossRefGoogle Scholar
  232. Wang, S., Q. Wang, et al. (1993). “Cloning and characterization of subunits of the T-cell receptor and murine leukemia virus enhancer core-binding factor.” Mol Cell Biol 13(6): 3324–3339.PubMedGoogle Scholar
  233. Wang, Z., Y. Zhang, et al. (1995). “Cyclin D3 is essential for megakaryocytopoiesis.” Blood 86(10): 3783–3788.PubMedGoogle Scholar
  234. Watson, D. K., F. E. Smyth, et al. (1992). “The ERGB/Fli-1 gene: isolation and characterization of a new member of the family of human ETS transcription factors.” Cell Growth Differ 3(10): 705–713.PubMedGoogle Scholar
  235. Wechsler, J., M. Greene, et al. (2002). “Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome.” Nat Genet 32(1): 148–152.PubMedCrossRefGoogle Scholar
  236. Weich, N. S., A. Wang, et al. (1997). “Recombinant human interleukin-11 directly promotes megakaryocytopoiesis in vitro.” Blood 90(10): 3893–3902.PubMedGoogle Scholar
  237. Weinstein, R., M. B. Stemerman, et al. (1981). “The morphological and biochemical characterization of a line of rat promegakaryoblasts.” Blood 58(1): 110–121.PubMedGoogle Scholar
  238. Wenger, S. L., P. D. Grossfeld, et al. (2006). “Molecular characterization of an 11q interstitial deletion in a patient with the clinical features of Jacobsen syndrome.” Am J Med Genet A 140(7): 704–708.PubMedGoogle Scholar
  239. Wu, Y., T. Welte, et al. (2007). “PECAM-1: a multifaceted regulator of megakaryocytopoiesis.” Blood 110(3): 851–859.PubMedCrossRefGoogle Scholar
  240. Yagi, M., G. J. Roth (2006). “Megakaryocyte polyploidization is associated with decreased expression of polo-like kinase (PLK).” J Thromb Haemost 4(9): 2028–2034.PubMedCrossRefGoogle Scholar
  241. Yan, X. Q., D. Lacey, et al. (1995). “Chronic exposure to retroviral vector encoded MGDF (mpl-ligand) induces lineage-specific growth and differentiation of megakaryocytes in mice.” Blood 86(11): 4025–4033.PubMedGoogle Scholar
  242. Yang, D., D. J. McCrann, et al. (2007). “Increased polyploidy in aortic vascular smooth muscle cells during aging is marked by cellular senescence.” Aging Cell 6(2): 257–260.PubMedCrossRefGoogle Scholar
  243. Zakynthinos, S. G., S. Papanikolaou, et al. (2004). “Sepsis severity is the major determinant of circulating thrombopoietin levels in septic patients.” Crit Care Med 32(4): 1004–1010.PubMedCrossRefGoogle Scholar
  244. Zhang, J., F. Varas, et al. (2007). “CD41-YFP mice allow in vivo labeling of megakaryocytic cells and reveal a subset of platelets hyperreactive to thrombin stimulation.” Exp Hematol 35(3): 490–499.PubMedCrossRefGoogle Scholar
  245. Zhang, Y., Z. Wang, et al. (1996). “The cell cycle in polyploid megakaryocytes is associated with reduced activity of cyclin B1-dependent cdc2 kinase.” J Biol Chem 271(8): 4266–4272.PubMedCrossRefGoogle Scholar
  246. Zhang, Y., Y. Nagata, et al. (2004). “Aberrant quantity and localization of Aurora-B/AIM-1 and survivin during megakaryocyte polyploidization and the consequences of Aurora-B/AIM-1-deregulated expression.” Blood 103(10): 3717–3726.PubMedCrossRefGoogle Scholar
  247. Zheng, C., R. Yang, et al. (2008). “TPO-independent megakaryocytopoiesis.” Crit Rev Oncol Hematol 65(3): 212–222.PubMedCrossRefGoogle Scholar
  248. Zimmet, J., K. Ravid (2000). “Polyploidy: occurrence in nature, mechanisms, and significance for the megakaryocyte-platelet system.” Exp Hematol 28: 3–16.PubMedCrossRefGoogle Scholar
  249. Zimmet, J. M., D. Ladd, C. W. Jackson, P. E. Stenberg, K. Ravid. (1997). “ A role for cyclin D3 in the endomitotic cell cycle.” Mol Cell Biol 17(12): 7248–7259.PubMedGoogle Scholar
  250. Zon, L. I., Y. Yamaguchi, et al. (1993). “Expression of mRNA for the GATA-binding proteins in human eosinophils and basophils: potential role in gene transcription.” Blood 81(12): 3234–3241.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of BiochemistryK225 Boston University School of MedicineBoston

Personalised recommendations