Hematopoietic Stem Cell Niches

  • Anne Wilson
  • Andreas Trumpp


The hematopoietic stem cell (HSC) is probably the best characterized somatic stem cell and is still the only one regularly used in clinical practice. Nevertheless, expansion of HSCs in vitro has been surprisingly unsuccessful, limiting their full therapeutic potential. During homeostasis, the vast majority of HSCs are found in the bone marrow (BM) localized to specific microenvironments called stem cell “niches.” Over the last few years our knowledge of cellular niche components and the signaling molecules that coordinate the crosstalk between HSCs and niche cells has dramatically increased. Here we review the two main niche types found in the BM: the endosteal and the vascular niches, and provide an overview of the different signaling and cell adhesion molecules that form the HSC—niche synapse. Signals from BM niches not only control HSC dormancy, but also regulate the balance between self-renewal and differentiation. In the future, successful expansion of HSCs for therapeutic use will require three-dimensional reconstruction of a stem cell-niche unit.


Stem Cell Hematopoietic Stem Cell Stem Cell Niche Cell Stem Cell Bone Marrow Niche 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, G.B., Chabner, K.T., Alley, I.R., Olson, D.P., Szczepiorkowski, Z.M., Poznansky, M.C., Kos, C.H., Pollak, M.R., Brown, E.M., and Scadden, D.T. 2006. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 439(7076): 599–603.PubMedGoogle Scholar
  2. Ara, T., Tokoyoda, K., Sugiyama, T., Egawa, T., Kawabata, K., and Nagasawa, T. 2003. Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. Immunity 19(2): 257–267.PubMedGoogle Scholar
  3. Arai, F. and Suda, T. 2007. Maintenance of quiescent hematopoietic stem cells in the osteoblastic niche. Ann N Y Acad Sci 1106: 41–53.PubMedGoogle Scholar
  4. Arai, F., Hirao, A., Ohmura, M., Sato, H., Matsuoka, S., Takubo, K., Ito, K., Koh, G.Y., and Suda, T. 2004. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118(2): 149–161.PubMedGoogle Scholar
  5. Askenasy, N. and Farkas, D.L. 2003. In vivo imaging studies of the effect of recipient conditioning, donor cell phenotype and antigen disparity on homing of haematopoietic cells to the bone marrow. Br J Haematol 120(3): 505–515.PubMedGoogle Scholar
  6. Avecilla, S.T., Hattori, K., Heissig, B., Tejada, R., Liao, F., Shido, K., Jin, D.K., Dias, S., Zhang, F., Hartman, T.E., et al. 2004. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 10(1): 64–71.PubMedGoogle Scholar
  7. Barker, J.E. 1994. Sl/Sld hematopoietic progenitors are deficient in situ. Exp Hematol 22(2): 174–177.PubMedGoogle Scholar
  8. Barker, J.E. 1997. Early transplantation to a normal microenvironment prevents the development of Steel hematopoietic stem cell defects. Exp Hematol 25(6): 542–547.PubMedGoogle Scholar
  9. Barker, N., van Es, J.H., Kuipers, J., Kujala, P., van den Born, M., Cozijnsen, M., Haegebarth, A., Korving, J., Begthel, H., Peters, P.J., et al. 2007. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165): 1003–1007.PubMedGoogle Scholar
  10. Bhardwaj, G., Murdoch, B., Wu, D., Baker, D.P., Williams, K.P., Chadwick, K., Ling, L.E., Karanu, F.N., and Bhatia, M. 2001. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol 2(2): 172–180.PubMedGoogle Scholar
  11. Blanpain, C., Horsley, V., and Fuchs, E. 2007. Epithelial stem cells: Turning over new leaves. Cell 128(3): 445–458.PubMedGoogle Scholar
  12. Bradford, G.B., Williams, B., Rossi, R., and Bertoncello, I. 1997. Quiescence, cycling, and turnover in the primitive hematopoietic stem cell compartment. Exp Hematol 25(5): 445–453.PubMedGoogle Scholar
  13. Calvi, L.M., Adams, G.B., Weibrecht, K.W., Weber, J.M., Olson, D.P., Knight, M.C., Martin, R.P., Schipani, E., Divieti, P., Bringhurst, F.R., et al. 2003. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425(6960): 841–846.PubMedGoogle Scholar
  14. Camargo, F.D., Chambers, S.M., Drew, E., McNagny, K.M., and Goodell, M.A. 2006. Hematopoietic stem cells do not engraft with absolute efficiencies. Blood 107(2): 501–507.PubMedGoogle Scholar
  15. Cancelas, J.A., Lee, A.W., Prabhakar, R., Stringer, K.F., Zheng, Y., and Williams, D.A. 2005. Rac GTPases differentially integrate signals regulating hematopoietic stem cell localization . Nat Med 11(8): 886–891.PubMedGoogle Scholar
  16. Chang, J.T., Palanivel, V.R., Kinjyo, I., Schambach, F., Intlekofer, A.M., Banerjee, A., Longworth, S.A., Vinup, K.E., Mrass, P., Oliaro, J., et al. 2007. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315(5819): 1687–1691.PubMedGoogle Scholar
  17. Chanprasert, S., Geddis, A.E., Barroga, C., Fox, N.E., and Kaushansky, K. 2006. Thrombopoietin (TPO) induces c-myc expression through a PI3K- and MAPK-dependent pathway that is not mediated by Akt, PKCzeta or mTOR in TPO-dependent cell lines and primary megakaryo-cytes. Cell Signal 18(8): 1212–1218.PubMedGoogle Scholar
  18. Cheshier, S.H., Morrison, S.J., Liao, X., and Weissman, I.L. 1999. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells . Proc Natl Acad Sci USA 96(6): 3120–3125.PubMedGoogle Scholar
  19. Corral, D.A., Amling, M., Priemel, M., Loyer, E., Fuchs, S., Ducy, P., Baron, R., and Karsenty, G. 1998 . Dissociation between bone resorption and bone formation in osteopenic transgenic mice. Proc Natl Acad Sci USA 95(23): 13835–13840.PubMedGoogle Scholar
  20. Cotsarelis, G., Sun, T.T., and Lavker, R.M. 1990. Label-retaining cells reside in the bulge area of pilosebaceous unit: Implications for follicular stem cells, hair cycle, and skin carcinogenesis . Cell 61(7): 1329–1337.PubMedGoogle Scholar
  21. Czechowicz, A., Kraft, D., Weissman, I.L., and Bhattacharya, D. 2007. Efficient transplantation via antibody-based clearance of hematopoietic stem cell niches. Science 318(5854): 1296–1299.PubMedGoogle Scholar
  22. Deguchi, K., Yagi, H., Inada, M., Yoshizaki, K., Kishimoto, T., and Komori, T. 1999. Excessive extramedullary hematopoiesis in Cbfa1-deficient mice with a congenital lack of bone marrow . Biochem Biophys Res Commun 255(2): 352–359.PubMedGoogle Scholar
  23. Ducy, P., Schinke, T., and Karsenty, G. 2000. The osteoblast: A sophisticated fibroblast under central surveillance. Science 289(5484): 1501–1504.PubMedGoogle Scholar
  24. Dykstra, B., Kent, D., Bowie, M., McCaffrey, L., Hamilton, M., Lyons, K., Lee, S.-J., Brinkman, R., and Eaves, C.J. 2007. Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 1: 218–229.PubMedGoogle Scholar
  25. Flanagan, J.G., Chan, D.C., and Leder, P. 1991. Transmembrane form of the kit ligand growth factor is determined by alternative splicing and is missing in the Sld mutant . Cell 64 (5) : 1025–1035.PubMedGoogle Scholar
  26. Flynn, C.M. and Kaufman, D.S. 2007. Donor cell leukemia: Insight into cancer stem cells and the stem cell niche. Blood 109(7): 2688–2692.PubMedGoogle Scholar
  27. Friedl, P. and Storim, J. 2004. Diversity in immune—cell interactions: States and functions of the immunological synapse. Trends Cell Biol 14(10): 557–567.PubMedGoogle Scholar
  28. Gong, J.K. 1978. Endosteal marrow: A rich source of hematopoietic stem cells. Science 199(4336): 1443–1445.PubMedGoogle Scholar
  29. Gu, Y., Filippi, M.D., Cancelas, J.A., Siefring, J.E., Williams, E.P., Jasti, A.C., Harris, C.E., Lee, A.W., Prabhakar, R., Atkinson, S.J., et al. 2003. Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science 302(5644): 445–449.PubMedGoogle Scholar
  30. Haug, J.S., He, X.C., Grindley, J.C., Wunderlich, J.P., Gaudenz, K., Ross, J.T., Paulson, A., Wagner, K.P., Xie, Y., Zhu, R., et al. 2008. N-cadherin expression level distinguishes reserved versus primed states of hematopoietic stem cells. Cell Stem Cell 2(4): 367–379.PubMedGoogle Scholar
  31. Heissig, B., Hattori, K., Dias, S., Friedrich, M., Ferris, B., Hackett, N.R., Crystal, R.G., Besmer, P., Lyden, D., Moore, M.A., et al. 2002. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109(5): 625–637.PubMedGoogle Scholar
  32. Ho, A.D. 2005. Kinetics and symmetry of divisions of hematopoietic stem cells. Exp Hematol 33(1): 1–8.PubMedGoogle Scholar
  33. Hosokawa, K., Arai, F., Yoshihara, H., Nakamura, Y., Gomei, Y., Iwasaki, H., Miyamoto, K., Shima, H., Ito, K., and Suda, T. 2007. Function of oxidative stress in the regulation of hemat-opoietic stem cell—niche interaction. Biochem Biophys Res Commun 363(3): 578–583.PubMedGoogle Scholar
  34. Huber, T.L., Kouskoff, V., Fehling, H.J., Palis, J., and Keller, G. 2004. Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature 432(7017): 625–630.PubMedGoogle Scholar
  35. Ito, K., Hirao, A., Arai, F., Takubo, K., Matsuoka, S., Miyamoto, K., Ohmura, M., Naka, K., Hosokawa , K. , Ikeda , Y. , et al. 2006 . Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 12(4): 446–451.PubMedGoogle Scholar
  36. Jeannet, G., Scheller, M., Scarpellino, L., Duboux, S., Gardiol, N., Back, J., Kuttler, F., Malanchi, I., Birchmeier, W., Leutz, A., et al. 2008. Long-term, multilineage hematopoiesis occurs in the combined absence of beta-catenin and gamma-catenin. Blood 111(1): 142–149.PubMedGoogle Scholar
  37. Jin, L., Hope, K.J., Zhai, Q., Smadja-Joffe, F., and Dick, J.E. 2006. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12(10): 1167–1174.PubMedGoogle Scholar
  38. Karsenty, G. and Wagner, E.F. 2002. Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2(4): 389–406.PubMedGoogle Scholar
  39. Kiel, M.J., Yilmaz, O.H., Iwashita, T., Terhorst, C., and Morrison, S.J. 2005. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121(7): 1109–1121.PubMedGoogle Scholar
  40. Kiel, M.J., Radice, G.L., and Morrison, S.J. 2007. Lack of evidence that hematopoietic stem cells depend on N-cadherin-mediated adhesion to osteoblasts for their maintenance . Cell Stem Cell 1(2): 204–217.PubMedGoogle Scholar
  41. Kinashi, T. and Springer, T.A. 1994. Steel factor and c-kit regulate cell—matrix adhesion. Blood 83(4): 1033–1038.PubMedGoogle Scholar
  42. Knoblich, J.A. 2008. Mechanisms of asymmetric stem cell division. Cell 132(4): 583–597.PubMedGoogle Scholar
  43. Koch, U., Wilson, A., Cobas, M., Kemler, R., Macdonald, H.R., and Radtke, F. 2008. Simultaneous loss of beta- and gamma-catenin does not perturb hematopoiesis or lymphopoiesis . Blood 111(1): 160–164.PubMedGoogle Scholar
  44. Kollet, O., Dar, A., and Lapidot, T. 2007. The multiple roles of osteoclasts in host defense: Bone remodeling and hematopoietic stem cell mobilization. Annu Rev Immunol 25: 51–69.PubMedGoogle Scholar
  45. Konno, D., Shioi, G., Shitamukai, A., Mori, A., Kiyonari, H., Miyata, T. , and Matsuzaki , F. 2008 . Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renew-ability during mammalian neurogenesis. Nat Cell Biol 10(1): 93–101.PubMedGoogle Scholar
  46. Kovach, N.L., Lin, N., Yednock, T., Harlan, J.M., and Broudy, V.C. 1995. Stem cell factor modulates avidity of alpha 4 beta 1 and alpha 5 beta 1 integrins expressed on hematopoietic cell lines. Blood 85(1): 159–167.PubMedGoogle Scholar
  47. Lapidot, T. and Petit, I. 2002. Current understanding of stem cell mobilization: The roles of chem-okines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells . Exp Hematol 30(9): 973–981.PubMedGoogle Scholar
  48. Lechler, T. and Fuchs, E. 2005. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437: 275–280.PubMedGoogle Scholar
  49. Lerner, C. and Harrison, D.E. 1990. 5-Fluorouracil spares hemopoietic stem cells responsible for long-term repopulation. Exp Hematol 18(2): 114–118.PubMedGoogle Scholar
  50. Li, W., Johnson, S.A., Shelley, W.C., Ferkowicz, M., Morrison, P., Li, Y., and Yoder, M.C. 2003. Primary endothelial cells isolated from the yolk sac and para-aortic splanchnopleura support the expansion of adult marrow stem cells in vitro. Blood 102(13): 4345–4353.PubMedGoogle Scholar
  51. Li, W., Johnson, S.A., Shelley, W.C., and Yoder, M.C. 2004. Hematopoietic stem cell repopulat-ing ability can be maintained in vitro by some primary endothelial cells . Exp Hematol 32 (12) : 1226 – 1237 .PubMedGoogle Scholar
  52. Lord, B.I., Testa, N.G., and Hendry, J.H. 1975. The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood 46(1): 65–72.PubMedGoogle Scholar
  53. Lyman, S.D. and Jacobsen, S.E. 1998. c-kit ligand and Flt3 ligand: Stem/progenitor cell factors with overlapping yet distinct activities. Blood 91(4): 1101–1134.PubMedGoogle Scholar
  54. Maillard, I., Koch, U., Dumortier, A., Shestova, O., Xu, L., Sai, H., Pross, S.E., Aster, J.C., Bhandoola, A., Radtke, F., et al. 2008. Canonical notch signaling is dispensable for the maintenance of adult hematopoietic stem cells. Cell Stem Cell 2(4): 356–366.PubMedGoogle Scholar
  55. Maloney, M.A. and Patt, H.M. 1975. On the origin of hematopoietic stem cells after local marrow extirpation. Proc Soc Exp Biol Med 149(1): 94–97.PubMedGoogle Scholar
  56. Miyazawa, K., Williams, D.A., Gotoh, A., Nishimaki, J., Broxmeyer, H.E., and Toyama, K. 1995. Membrane-bound steel factor induces more persistent tyrosine kinase activation and longer life span of c-kit gene-encoded protein than its soluble form. Blood 85(3): 641–649.PubMedGoogle Scholar
  57. Murphy, M.J., Wilson, A., and Trumpp, A. 2005. More than just proliferation: Myc function in stem cells. Trends Cell Biol 15(3): 128–137.PubMedGoogle Scholar
  58. Nagasawa, T., Hirota, S., Tachibana, K., Takakura, N., Nishikawa, S., Kitamura, Y., Yoshida, N., Kikutani, H., and Kishimoto, T. 1996. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382(6592): 635–638.PubMedGoogle Scholar
  59. Niche, W. Accession May 2008. Wikipedia
  60. Nilsson, S.K., Johnston, H.M., and Coverdale, J.A. 2001. Spatial localization of transplanted hemopoietic stem cells: Inferences for the localization of stem cell niches . Blood 97 (8) : 2293–2299.PubMedGoogle Scholar
  61. Nilsson, S.K., Johnston, H.M., Whitty, G.A., Williams, B., Webb, R.J., Denhardt , D.T. , Bertoncello, I., Bendall, L.J., Simmons, P.J., and Haylock, D.N. 2005. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106(4): 1232–1239.PubMedGoogle Scholar
  62. Ohlstein, B., Kai, T., Decotto, E., and Spradling, A. 2004. The stem cell niche: Theme and variations. Curr Opin Cell Biol 16(6): 693–699.PubMedGoogle Scholar
  63. Ohneda, O., Fennie, C., Zheng, Z., Donahue, C., La, H., Villacorta, R., Cairns, B., and Lasky, L.A. 1998 . Hematopoietic stem cell maintenance and differentiation are supported by embryonic aorta-gonad-mesonephros region-derived endothelium. Blood 92(3): 908–919.PubMedGoogle Scholar
  64. Oostendorp, R.A., Harvey, K.N., Kusadasi, N., de Bruijn, M.F., Saris, C., Ploemacher, R.E., Medvinsky, A.L., and Dzierzak, E.A. 2002. Stromal cell lines from mouse aorta-gonads-mesonephros subregions are potent supporters of hematopoietic stem cell activity . Blood 99(4): 1183–1189.PubMedGoogle Scholar
  65. Orford, K.W. and Scadden, D.T. 2008. Deconstructing stem cell self-renewal: Genetic insights into cell-cycle regulation. Nat Rev Genet 9(2): 115–128.PubMedGoogle Scholar
  66. Osawa, M., Hanada, K., Hamada, H., and Nakauchi, H. 1996. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273(5272): 242–245.PubMedGoogle Scholar
  67. Passegue, E., Wagers, A.J., Giuriato, S., Anderson, W.C., and Weissman, I.L. 2005. Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J Exp Med 202(11): 1599–1611.PubMedGoogle Scholar
  68. Patt, H.M. and Maloney, M.A. 1972. Bone formation and resorption as a requirement for marrow development. Proc Soc Exp Biol Med 140(1): 205–207.PubMedGoogle Scholar
  69. Ponomaryov, T., Peled, A., Petit, I., Taichman, R.S., Habler, L., Sandbank, J., Arenzana-Seisdedos, F., Magerus, A., Caruz, A., Fujii, N., et al. 2000. Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function . J Clin Invest 106 (11) : 1331–1339.PubMedGoogle Scholar
  70. Potten, C.S. and Loeffler, M. 1990. Stem cells: Attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110(4): 1001–1020.PubMedGoogle Scholar
  71. Puri, M.C. and Bernstein, A. 2003. Requirement for the TIE family of receptor tyrosine kinases in adult but not fetal hematopoiesis. Proc Natl Acad Sci USA 100(22): 12753–12758.PubMedGoogle Scholar
  72. Qian, H., Buza-Vidas, N., Hyland, C.D., Jensen, C.T., Antonchuk, J., Mansson, R., Thoren, L.A., Ekblom, M., Alexander, W.S., and Jacobsen, S.E. 2007. Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell 1(6): 671–684.PubMedGoogle Scholar
  73. Radice, G.L., Rayburn, H., Matsunami, H., Knudsen, K.A., Takeichi, M., and Hynes, R.O. 1997. Developmental defects in mouse embryos lacking N-cadherin. Dev Biol 181(1): 64–78.PubMedGoogle Scholar
  74. Rafii, S., Mohle, R., Shapiro, F., Frey, B.M., and Moore, M.A. 1997. Regulation of hematopoiesis by microvascular endothelium. Leuk Lymphoma 27(5–6): 375–386.PubMedGoogle Scholar
  75. Reya, T., Duncan, A.W., Ailles, L., Domen, J., Scherer, D.C., Willert, K., Hintz, L., Nusse, R., and Weissman, I.L. 2003. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423(6938): 409–414.PubMedGoogle Scholar
  76. Schofield, R. 1978. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4(1–2): 7–25.PubMedGoogle Scholar
  77. Shizuru, J.A., Negrin, R.S., and Weissman, I.L. 2005. Hematopoietic stem and progenitor cells: Clinical and preclinical regeneration of the hematolymphoid system . Annu Rev Med 56 : 509–538.PubMedGoogle Scholar
  78. Solar, G.P., Kerr, W.G., Zeigler, F.C., Hess, D., Donahue, C., de Sauvage, F.J., and Eaton, D.L. 1998. Role of c-mpl in early hematopoiesis. Blood 92(1): 4–10.PubMedGoogle Scholar
  79. Spangrude, G.J. and Johnson, G.R. 1990. Resting and activated subsets of mouse multipotent hematopoietic stem cells. Proc Natl Acad Sci USA 87(19): 7433–7437.PubMedGoogle Scholar
  80. Spradling, A., Drummond-Barbosa, D., and Kai, T. 2001. Stem cells find their niche. Nature 414(6859): 98–104.PubMedGoogle Scholar
  81. Stier, S., Cheng, T., Dombkowski, D., Carlesso, N., and Scadden, D.T. 2002. Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood 99(7): 2369–2378.PubMedGoogle Scholar
  82. Stier, S., Ko, Y., Forkert, R., Lutz, C., Neuhaus, T., Grunewald, E., Cheng, T., Dombkowski, D., Calvi, L.M., Rittling, S.R., et al. 2005. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med 201(11): 1781–1791.PubMedGoogle Scholar
  83. Suda, J., Suda, T., and Ogawa, M. 1984. Analysis of differentiation of mouse hemopoietic stem cells in culture by sequential replating of paired progenitors. Blood 64(2): 393–399.PubMedGoogle Scholar
  84. Suda , T. , Arai , F. , and Hirao , A. 2005 . Hematopoietic stem cells and their niche . Trends Immunol 26(8): 426–433.PubMedGoogle Scholar
  85. Sugiyama, T., Kohara, H., Noda, M., and Nagasawa, T. 2006. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches . Immunity 25(6): 977–988.PubMedGoogle Scholar
  86. Taichman, R.S. 2005. Blood and bone: Two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 105(7): 2631–2639.PubMedGoogle Scholar
  87. Taichman, R.S. and Emerson, S.G. 1998. The role of osteoblasts in the hematopoietic microenvi-ronment. Stem Cells 16(1): 7–15.PubMedGoogle Scholar
  88. Takano, H., Ema, H., Sudo, K., and Nakauchi, H. 2004. Asymmetric division and lineage commitment at the level of hematopoietic stem cells: Inference from differentiation in daughter cell and granddaughter cell pairs. J Exp Med 199(3): 295–302.PubMedGoogle Scholar
  89. Thoren, L.A., Liuba, K., Bryder, D., Nygren, J.M., Jensen, C.T., Qian, H., Antonchuk, J., and Jacobsen, S.E. 2008. Kit regulates maintenance of quiescent hematopoietic stem cells. J Immunol 180(4): 2045–2053.PubMedGoogle Scholar
  90. Till, J.E. and McCulloch, E.A. 1961. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14: 213–222.PubMedGoogle Scholar
  91. Tokoyoda, K., Egawa, T., Sugiyama, T., Choi, B.I., and Nagasawa, T. 2004. Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity 20(6): 707–718.PubMedGoogle Scholar
  92. Tothova, Z., Kollipara, R., Huntly, B.J., Lee, B.H., Castrillon, D.H., Cullen, D.E., McDowell, E.P., Lazo-Kallanian, S., Williams, I.R., Sears, C., et al. 2007. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128(2): 325–339.PubMedGoogle Scholar
  93. Trowbridge, J.J., Scott, M.P., and Bhatia, M. 2006. Hedgehog modulates cell cycle regulators in stem cells to control hematopoietic regeneration. Proc Natl Acad Sci USA 103(38): 14134–14139.PubMedGoogle Scholar
  94. Trumpp, A. and Wiestler, O.D. 2008. Mechanisms of disease: Cancer stem cells-targeting the evil twin. Nat Clin Pract Oncol 5(6): 337–347.PubMedGoogle Scholar
  95. Uchida, N., He, D., Friera, A.M., Reitsma, M., Sasaki, D., Chen, B., and Tsukamoto, A. 1997. The unexpected G0/G1 cell cycle status of mobilized hematopoietic stem cells from peripheral blood. Blood 89(2): 465–472.PubMedGoogle Scholar
  96. Visnjic, D., Kalajzic, I., Gronowicz, G., Aguila, H.L., Clark, S.H., Lichtler, A.C., and Rowe, D.W. 2001 . Conditional ablation of the osteoblast lineage in Col2.3deltatk transgenic mice . J Bone Miner Res 16(12): 2222–2231.PubMedGoogle Scholar
  97. Visnjic, D., Kalajzic, Z., Rowe, D.W., Katavic, V., Lorenzo, J., and Aguila, H.L. 2004. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103(9): 3258–3264.PubMedGoogle Scholar
  98. Waghmare, S.K., Bansal, R., Lee, J., Zhang, Y.V., McDermitt, D.J., and Tumbar, T. 2008. Quantitative proliferation dynamics and random chromosome segregation of hair follicle stem cells. EMBO J 27(9):1309–1320.PubMedGoogle Scholar
  99. Wai, P.Y. and Kuo, P.C. 2008. Osteopontin: Regulation in tumor metastasis. Cancer Metastasis Rev 27(1): 103–118.PubMedGoogle Scholar
  100. Walkley, C.R., Olsen, G.H., Dworkin, S., Fabb, S.A., Swann, J., McArthur, G.A., Westmoreland, S.V., Chambon, P., Scadden, D.T., and Purton, L.E. 2007a. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell 129(6): 1097–1110.Google Scholar
  101. Walkley , C.R. , Shea , J.M. , Sims , N.A. , Purton , L.E. , and Orkin , S.H. 2007b. Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 129(6): 1081–1095.Google Scholar
  102. Weissman, I.L. 2000. Stem cells: Units of development, units of regeneration, and units in evolution. Cell 100(1): 157–168.PubMedGoogle Scholar
  103. Williams, D.A., Zheng, Y., and Cancelas, J.A. 2008. Rho GTPases and regulation of hematopoi-etic stem cell localization. Methods Enzymol 439: 365–393.PubMedGoogle Scholar
  104. Wilson, A. and Trumpp, A. 2006. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6: 93–106.PubMedGoogle Scholar
  105. Wilson, A., Murphy, M.J., Oser, G.M., Oskarsson, T., Kaloulis, K., Bettess, M.D., Pasche, A.C., Knabenhans, C., MacDonald, H.R., and Trumpp, A. 2004. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev 18(22): 2747–2763.PubMedGoogle Scholar
  106. Wilson, A., Oser, G.M., Jaworski, M., Blanco-Bose, W.E., Laurenti, E., Adolphe, C., Essers, M.A., Macdonald, H.R., and Trumpp, A. 2007. Dormant and self-renewing hematopoietic stem cells and their niches. Ann N Y Acad Sci 1106: 64–75.PubMedGoogle Scholar
  107. Wilson, A., Laurenti, E., Oser, G.M., van der Wath, R.C., Blanco-Bose,, W., Jaworski, M., Offner, S., Dunant, C., Eshkind, L., Bockamp, E., Lio, P., MacDonald, H.R., and Trumpp, A. in press. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell.Google Scholar
  108. Wright, D.E., Bowman, E.P., Wagers, A.J., Butcher, E.C., and Weissman, I.L. 2002. Hematopoietic stem cells are uniquely selective in their migratory response to chemokines . J Exp Med 195 (9) : 1145–1154.PubMedGoogle Scholar
  109. Yoshihara, H., Arai, F., Hosokawa, K., Hagiwara, T., Takubo, K., Nakamura, Y., Gomei, Y., Iwasaki, H., Matsuoka, S., Miyamoto, K., et al. 2007. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche . Cell Stem Cell 1(6): 685–697.PubMedGoogle Scholar
  110. Zhang, J., Niu, C., Ye, L., Huang, H., He, X., Tong, W.G., Ross, J., Haug, J., Johnson, T., Feng, J.Q., et al. 2003. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425(6960): 836–841.PubMedGoogle Scholar
  111. Zou, Y.R., Kottmann, A.H., Kuroda, M., Taniuchi, I., and Littman, D.R. 1998. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development . Nature 393(6685): 595–599.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Deutsches Krebsforschungszentrum (DKFZ), DKFZ-ZMBH AllianceHeidelbergGermany

Personalised recommendations