The Road to Commitment: Lineage Restriction Events in Hematopoiesis

  • Robert Mansson
  • Sasan Zandi
  • David Bryder
  • Mikael Sigvardsson


All the mature blood cells in circulation as well as in other tissues can be generated by one and the same hematopoietic stem cell. Upon cell division, the multipotent stem cell generates one daughter cell with stem cell characteristics while the other progeny initiates a sequence of proliferation and differentiation events. These result in a dramatic expansion in the number of progenitor cells that upon further maturation gradually lose their multipotency and gain the specific features of mature blood cell types. This chapter focuses on the biology of the earliest events in hematopoietic cell maturation where the initial decisions of the cell to enter defined developmental pathways and lineage restriction events are achieved.


Stem Cell Progenitor Cell Hematopoietic Stem Cell Flt3 Ligand Multipotent Progenitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adolfsson, J., Borge, O. J., Bryder, D., Theilgaard-Monch, K., Astrand-Grundstrom, I., Sitnicka, E., Sasaki, Y., and Jacobsen, S. E. (2001). Upregulation of Flt3 expression within the bone marrow Lin(−)Sca1(+)c-kit(+) stem cell compartment is accompanied by loss of self-renewal capacity. Immunity 15, 659–669.PubMedGoogle Scholar
  2. Adolfsson, J., Mansson, R., Buza-Vidas, N., Hultquist, A., Liuba, K., Jensen, C. T., Bryder, D., Yang, L., Borge, O. J., Thoren, L. A., et al. (2005). Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential: a revised road map for adult blood lineage commitment. Cell 121, 295–306.PubMedGoogle Scholar
  3. Ahmad, K., and Henikoff, S. (2002). The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 9, 1191–1200.PubMedGoogle Scholar
  4. Akashi, K., Traver, D., Miyamoto, T., and Weissman, I. L. (2000). A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197.PubMedGoogle Scholar
  5. Allman, D., Sambandam, A., Kim, S., Miller, J. P., Pagan, A., Well, D., Meraz, A., and Bhandoola, A. (2003). Thymopoiesis independent of common lymphoid progenitors. Nat Immunol 4, 168–174.PubMedGoogle Scholar
  6. Alvarez-Silva, M., Belo-Diabangouaya, P., Salaun, J., and Dieterlen-Lievre, F. (2003). Mouse placenta is a major hematopoietic organ. Development 130, 5437–5444.PubMedGoogle Scholar
  7. Antequera, F., and Bird, A. (1993). Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci USA 90, 11995–11999.PubMedGoogle Scholar
  8. Arinobu, Y., Mizuno, S., Chong, Y., Shigematsu, H., Iino, T., Iwasaki, H., Graf, T., Mayfield, R., Chan, S., Kastner, P., and Akashi, K. (2007). Reciprocal activation of Gata-1 and PU.1 marks initial specification of hematopoietic stem cells into myeloerythroid and myelolymphoid lineages. Cell Stem Cell 1, 416–427.PubMedGoogle Scholar
  9. Arinobu, Y., Iwasaki, H., Gurish, M. F., Mizuno, S., Shigematsu, H., Ozawa, H., Tenen, D. G., Austen, K. F., and Akashi, K. (2005). Developmental checkpoints of the basophil/mast cell lineages in adult murine hematopoiesis. Proc Natl Acad Sci USA 102, 18105–18110.PubMedGoogle Scholar
  10. Attar, E. C., and Scadden, D. T. (2004). Regulation of hematopoietic stem cell growth. Leukemia 18, 1760–1768.PubMedGoogle Scholar
  11. Attema, J. L., Papathanasiou, P., Forsberg, E. C., Xu, J., Smale, S. T., and Weissman, I. L. (2007). Epigenetic characterization of hematopoietic stem cell differentiation using miniChIP and bisulfite sequencing analysis. Proc Natl Acad Sci USA 104, 12371–12376.PubMedGoogle Scholar
  12. Azuara, V., Perry, P., Sauer, S., Spivakov, M., Jorgensen, H. F., John, R. M., Gouti, M., Casanova, M., Warnes, G., Merkenschlager, M., and Fisher, A. G. (2006). Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8, 532–538.PubMedGoogle Scholar
  13. Bain, G., Maandag, E. C. R., Izon, D. J., Amsen, D., Kruisbeek, A. M., Weintraub, B. C., Kroop, I., Schlissel, M. S., Feeney, A. J., van Roon, M., et al. (1994). E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79 885–892.PubMedGoogle Scholar
  14. Becker, A. J., Mc, C. E., and Till, J. E. (1963). Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197, 452–454.PubMedGoogle Scholar
  15. Bernstein, B. E., Mikkelsen, T. S., Xie, X., Kamal, M., Huebert, D. J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., et al. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326.PubMedGoogle Scholar
  16. Bode, H. R. (1996). The interstitial cell lineage of hydra: a stem cell system that arose early in evolution. J Cell Sci 109, (Pt 6), 1155–1164.PubMedGoogle Scholar
  17. Bradford, G. B., Williams, B., Rossi, R., and Bertoncello, I. (1997). Quiescence, cycling, and turnover in the primitive hematopoietic stem cell compartment. Exp Hematol 25, 445–453.PubMedGoogle Scholar
  18. Bryder, D., Rossi, D. J., and Weissman, I. L. (2006). Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol 169, 338–346.PubMedGoogle Scholar
  19. Chen, C. Z., Li, M., de Graaf, D., Monti, S., Gottgens, B., Sanchez, M. J., Lander, E. S., Golub, T. R., Green, A. R., and Lodish, H. F. (2002). Identification of endoglin as a functional marker that defines long-term repopulating hematopoietic stem cells. Proc Natl Acad Sci USA 99 15468–15473.PubMedGoogle Scholar
  20. Chen, H., Ray-Gallet, D., Zhang, P., Hetherington, C. J., Gonzalez, D. A., Zhang, D. E., Moreau-Gachelin, F., and Tenen, D. G. (1995). PU.1 (Spi-1) autoregulates its expression in myeloid cells. Oncogene 11, 1549–1560.PubMedGoogle Scholar
  21. Cheng, T. (2004). Cell cycle inhibitors in normal and tumor stem cells. Oncogene 23, 7256–7266.PubMedGoogle Scholar
  22. Cheng, T., Rodrigues, N., Shen, H., Yang, Y., Dombkowski, D., Sykes, M., and Scadden, D. T. (2000). Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287, 1804–1808.PubMedGoogle Scholar
  23. Cheshier, S. H., Morrison, S. J., Liao, X., and Weissman, I. L. (1999). In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc Natl Acad Sci USA 96, 3120–3125.PubMedGoogle Scholar
  24. Choi, J. K., Shen, C.-P., Radomska, H. S., Eckhardt, L. A., and Kadesch, T. (1996). E47 activates the Ig-heavy chain and TdT loci in non-B cells. EMBO J 15, 5014–5021.PubMedGoogle Scholar
  25. Choi, K., Kennedy, M., Kazarov, A., Papadimitriou, J. C., and Keller, G. (1998). A common precursor for hematopoietic and endothelial cells. Development 125, 725–732.PubMedGoogle Scholar
  26. Christensen, J. L., and Weissman, I. L. (2001). Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc Natl Acad Sci USA 98, 14541–14546.PubMedGoogle Scholar
  27. Cumano, A., Ferraz, J. C., Klaine, M., Di Santo, J. P., and Godin, I. (2001). Intraembryonic, but not yolk sac hematopoietic precursors, isolated before circulation, provide long-term multilin-eage reconstitution. Immunity 15, 477–485.PubMedGoogle Scholar
  28. Cumano, A., and Godin, I. (2001). Pluripotent hematopoietic stem cell development during embryogenesis. Curr Opin Immunol 13, 166–171.PubMedGoogle Scholar
  29. Dakic, A., Metcalf, D., Di Rago, L., Mifsud, S., Wu, L., and Nutt, S. L. (2005). PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. J Exp Med 201, 1487–1502.PubMedGoogle Scholar
  30. Dias, S., Silva, H., Jr., Cumano, A., and Vieira, P. (2005). Interleukin-7 is necessary to maintain the B cell potential in common lymphoid progenitors. J Exp Med 201, 971–979.PubMedGoogle Scholar
  31. Dias S, Månsson R, Gurbuxani S, Sigvardsson M, Kee BL (2008). E2A proteins promote development of lymphoid-primed multipotent progenitors. Immunity. Aug;29,(2):217–27.Google Scholar
  32. Dick, J. E. (2003). Stem cells: self-renewal writ in blood. Nature 423, 231–233.PubMedGoogle Scholar
  33. Dick, J. E., Bhatia, M., Gan, O., Kapp, U., and Wang, J. C. (1997). Assay of human stem cells by repopulation of NOD/SCID mice. Stem Cells 15, Suppl 1, 199–203; discussion 204–207.PubMedGoogle Scholar
  34. Dick, J. E., Magli, M. C., Huszar, D., Phillips, R. A., and Bernstein, A. (1985). Introduction of a selectable gene into primitive stem cells capable of long-term reconstitution of the hemopoi-etic system of W/Wv mice. Cell 42, 71–79.PubMedGoogle Scholar
  35. Dieterlen-Lievre, F. (1975). On the origin of haemopoietic stem cells in the avian embryo: an experimental approach. J Embryol Exp Morphol 33, 607–619.PubMedGoogle Scholar
  36. Dzierzak, E., and Speck, N. A. (2008). Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol 9, 129–136.PubMedGoogle Scholar
  37. Ehrlich, M., Gama-Sosa, M. A., Huang, L. H., Midgett, R. M., Kuo, K. C., McCune, R. A., and Gehrke, C. (1982). Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res 10, 2709–2721.PubMedGoogle Scholar
  38. Ema, H., and Nakauchi, H. (2000). Expansion of hematopoietic stem cells in the developing liver of a mouse embryo. Blood 95, 2284–2288.PubMedGoogle Scholar
  39. Fehling, H. J., Lacaud, G., Kubo, A., Kennedy, M., Robertson, S., Keller, G., and Kouskoff, V. (2003). Tracking mesoderm induction and its specification to the hemangioblast during embryonic stem cell differentiation. Development 130, 4217–4227.PubMedGoogle Scholar
  40. Ferkowicz, M. J., and Yoder, M. C. (2005). Blood island formation: longstanding observations and modern interpretations. Exp Hematol 33, 1041–1047.PubMedGoogle Scholar
  41. Fogg, D. K., Sibon, C., Miled, C., Jung, S., Aucouturier, P., Littman, D. R., Cumano, A., and Geissmann, F. (2006). A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311, 83–87.PubMedGoogle Scholar
  42. Forsberg, E. C., Serwold, T., Kogan, S., Weissman, I. L., and Passegue, E. (2006). New evidence supporting megakaryocyte-erythrocyte potential of flk2/flt3+ multipotent hematopoietic progenitors. Cell 126, 415–426.PubMedGoogle Scholar
  43. Franco, C. B., Scripture-Adams, D. D., Proekt, I., Taghon, T., Weiss, A. H., Yui, M. A., Adams, S. L., Diamond, R. A., and Rothenberg, E. V. (2006). Notch/Delta signaling constrains reen-gineering of pro-T cells by PU.1. Proc Natl Acad Sci USA 103, 11993–11998.PubMedGoogle Scholar
  44. Fujiwara, Y., Browne, C. P., Cunniff, K., Goff, S. C., and Orkin, S. H. (1996). Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc Natl Acad Sci USA 93, 12355–12358.PubMedGoogle Scholar
  45. Gekas, C., Dieterlen-Lievre, F., Orkin, S. H., and Mikkola, H. K. (2005). The placenta is a niche for hematopoietic stem cells. Dev Cell 8, 365–375.PubMedGoogle Scholar
  46. Gering, M., Rodaway, A. R., Gottgens, B., Patient, R. K., and Green, A. R. (1998). The SCL gene specifies haemangioblast development from early mesoderm. EMBO J 17, 4029–4045.PubMedGoogle Scholar
  47. Giadrossi, S., Dvorkina, M., and Fisher, A. G. (2007). Chromatin organization and differentiation in embryonic stem cell models. Curr Opin Genet Dev 17, 132–138.PubMedGoogle Scholar
  48. Godin, I., Garcia-Porrero, J. A., Dieterlen-Lievre, F., and Cumano, A. (1999). Stem cell emergence and hemopoietic activity are incompatible in mouse intraembryonic sites. J Exp Med 190, 43–52.PubMedGoogle Scholar
  49. Gurish, M. F., Tao, H., Abonia, J. P., Arya, A., Friend, D. S., Parker, C. M., and Austen, K. F. (2001). Intestinal mast cell progenitors require CD49dbeta7 (alpha4beta7 integrin) for tissue-specific homing. J Exp Med 194, 1243–1252.PubMedGoogle Scholar
  50. Harrison, F., and De Vos, L. (1991). Porifera. In: Microscopic Anatomy of Invertebrates. Wiley, New York, pp. 29–90.Google Scholar
  51. Hartenstein, V. (2006). Blood cells and blood cell development in the animal kingdom. Annu Rev Cell Dev Biol 22, 677–712.PubMedGoogle Scholar
  52. Hu, M., Krause, D., Greaves, M., Sharkis, S., Dexter, M., Heyworth, C., and Enver, T. (1997). Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev 11, 774–785.PubMedGoogle Scholar
  53. Igarashi, H., Gregory, S. C., Yokota, T., Sakaguchi, N., and Kincade, P. W. (2002). Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity 17, 117–130.PubMedGoogle Scholar
  54. Ikuta, K., and Weissman, I. L. (1992). Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc Natl Acad Sci USA 89, 1502–1506.PubMedGoogle Scholar
  55. Iwama, A., Oguro, H., Negishi, M., Kato, Y., Morita, Y., Tsukui, H., Ema, H., Kamijo, T., Katoh-Fukui, Y., Koseki, H., et al. (2004). Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity 21, 843–851.PubMedGoogle Scholar
  56. Iwasaki, H., Mizuno, S., Arinobu, Y., Ozawa, H., Mori, Y., Shigematsu, H., Takatsu, K., Tenen, D. G., and Akashi, K. (2006). The order of expression of transcription factors directs hierarchical specification of hematopoietic lineages. Genes Dev 20, 3010–3021.PubMedGoogle Scholar
  57. Iwasaki, H., Mizuno, S., Mayfield, R., Shigematsu, H., Arinobu, Y., Seed, B., Gurish, M. F., Takatsu, K., and Akashi, K. (2005a). Identification of eosinophil lineage-committed progenitors in the murine bone marrow. J Exp Med 201, 1891–1897.Google Scholar
  58. Iwasaki, H., Mizuno, S., Wells, R. A., Cantor, A. B., Watanabe, S., and Akashi, K. (2003). GATA-1 converts lymphoid and myelomonocytic progenitors into the megakaryocyte/erythro-cyte lineages. Immunity 19, 451–462.PubMedGoogle Scholar
  59. Iwasaki, H., Somoza, C., Shigematsu, H., Duprez, E. A., Iwasaki-Arai, J., Mizuno, S., Arinobu, Y., Geary, K., Zhang, P., Dayaram, T., et al. (2005b). Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation. Blood 106, 1590–1600.Google Scholar
  60. Kafri, T., Ariel, M., Brandeis, M., Shemer, R., Urven, L., McCarrey, J., Cedar, H., and Razin, A. (1992). Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes Dev 6, 705–714.PubMedGoogle Scholar
  61. Kamminga, L. M., Bystrykh, L. V., de Boer, A., Houwer, S., Douma, J., Weersing, E., Dontje, B., and de Haan, G. (2006). The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. Blood 107, 2170–2179.PubMedGoogle Scholar
  62. Kanost, M. R., Jiang, H., and Yu, X. Q. (2004). Innate immune responses of a lepidopteran insect, Manduca sexta. Immunol Rev 198, 97–105.PubMedGoogle Scholar
  63. Keller, G., Paige, C., Gilboa, E., and Wagner, E. F. (1985). Expression of a foreign gene in myeloid and lymphoid cells derived from multipotent haematopoietic precursors. Nature 318, 149–154.PubMedGoogle Scholar
  64. Kiel, M. J., Yilmaz, O. H., Iwashita, T., Yilmaz, O. H., Terhorst, C., and Morrison, S. J. (2005). SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121.PubMedGoogle Scholar
  65. Kikuchi, K., Lai, A. Y., Hsu, C. L., and Kondo, M. (2005). IL-7 receptor signaling is necessary for stage transition in adult B cell development through up-regulation of EBF. J Exp Med 201, 1197–1203.PubMedGoogle Scholar
  66. Kim, I., Saunders, T. L., and Morrison, S. J. (2007). Sox17 dependence distinguishes the transcrip-tional regulation of fetal from adult hematopoietic stem cells. Cell 130, 470–483.PubMedGoogle Scholar
  67. Kondo, M., Scherer, D. C., Miyamoto, T., King, A. G., Akashi, K., Sugamura, K., and Weissman, I. L. (2000). Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines. Nature 407, 383–386.PubMedGoogle Scholar
  68. Kondo, M., Weissman, I. L., and Akashi, K. (1997). Identification of clonogenic common lym-phoid progenitors in mouse bone marrow. Cell 91, 661–672.PubMedGoogle Scholar
  69. Kopp, H. G., Avecilla, S. T., Hooper, A. T., and Rafii, S. (2005). The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethesda) 20, 349–356.Google Scholar
  70. Kulessa, H., Frampton, J., and Graf, T. (1995). GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts. Genes Dev 9, 1250–1262.PubMedGoogle Scholar
  71. Laiosa, C. V., Stadtfeld, M., Xie, H., de Andres-Aguayo, L., and Graf, T. (2006). Reprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBP alpha and PU.1 transcription factors. Immunity 25, 731–744.PubMedGoogle Scholar
  72. Lemischka, I. R., Raulet, D. H., and Mulligan, R. C. (1986). Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45, 917–927.PubMedGoogle Scholar
  73. Li, C. L., and Johnson, G. R. (1995). Murine hematopoietic stem and progenitor cells: I. Enrichment and biologic characterization. Blood 85, 1472–1479.Google Scholar
  74. Lieschke, G. J., Grail, D., Hodgson, G., Metcalf, D., Stanley, E., Cheers, C., Fowler, K. J., Basu, S., Zhan, Y. F., and Dunn, A. R. (1994a). Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84, 1737–1746.Google Scholar
  75. Lieschke, G. J., Stanley, E., Grail, D., Hodgson, G., Sinickas, V., Gall, J. A., Sinclair, R. A., and Dunn, A. R. (1994b). Mice lacking both macrophage- and granulocyte-macrophage colony-stimulating factor have macrophages and coexistent osteopetrosis and severe lung disease. Blood 84, 27–35.Google Scholar
  76. Lord, B. I., and Hendry, J. H. (1972). The distribution of haemopoietic colony-forming units in the mouse femur, and its modification by X-rays. Br J Radiol 45, 110–115.PubMedGoogle Scholar
  77. Lord, B. I., Testa, N. G., and Hendry, J. H. (1975). The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood 46, 65–72.PubMedGoogle Scholar
  78. Lorenz, E., Uphoff, D., Reid, T. R., and Shelton, E. (1951). Modification of irradiation injury in mice and guinea pigs by bone marrow injections. J Natl Cancer Inst 12, 197–201.PubMedGoogle Scholar
  79. Lund, A. H., and van Lohuizen, M. (2004). Epigenetics and cancer. Genes Dev 18, 2315–2335.PubMedGoogle Scholar
  80. Maloney, M. A., and Patt, H. M. (1975). On the origin of hematopoietic stem cells after local marrow extirpation. Proc Soc Exp Biol Med 149, 94–97.PubMedGoogle Scholar
  81. Mansson, R., Hultquist, A., Luc, S., Yang, L., Anderson, K., Kharazi, S., Al-Hashmi, S., Liuba, K., Thoren, L., Adolfsson, J., et al. (2007). Molecular evidence for hierarchical transcriptional lineage priming in fetal and adult stem cells and multipotent progenitors. Immunity 26, 407–419.PubMedGoogle Scholar
  82. Massberg, S., Schaerli, P., Knezevic-Maramica, I., Kollnberger, M., Tubo, N., Moseman, E. A., Huff, I. V., Junt, T., Wagers, A. J., Mazo, I. B., and von Andrian, U. H. (2007). Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 131, 994–1008.PubMedGoogle Scholar
  83. McArthur, G. A., Rohrschneider, L. R., and Johnson, G. R. (1994). Induced expression of c-fms in normal hematopoietic cells shows evidence for both conservation and lineage restriction of signal transduction in response to macrophage colony-stimulating factor. Blood 83, 972–981.PubMedGoogle Scholar
  84. McGrath, K. E., Koniski, A. D., Malik, J., and Palis, J. (2003). Circulation is established in a stepwise pattern in the mammalian embryo. Blood 101, 1669–1676.PubMedGoogle Scholar
  85. McKenzie, J. L., Takenaka, K., Gan, O. I., Doedens, M., and Dick, J. E. (2007). Low rhodamine 123 retention identifies long-term human hematopoietic stem cells within the Lin-CD34 + CD38 -population. Blood 109, 543–545.PubMedGoogle Scholar
  86. Medina, K. L., Pongubala, J. M., Reddy, K. L., Lancki, D. W., Dekoter, R., Kieslinger, M., Grosschedl, R., and Singh, H. (2004). Assembling a gene regulatory network for specification of the B cell fate. Dev Cell 7, 607–617.PubMedGoogle Scholar
  87. Medvinsky, A., and Dzierzak, E. (1996). Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86, 897–906.PubMedGoogle Scholar
  88. Meshorer, E., Yellajoshula, D., George, E., Scambler, P. J., Brown, D. T., and Misteli, T. (2006). Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell 10, 105–116.PubMedGoogle Scholar
  89. Miller, M. A., Technau, U., Smith, K. M., and Steele, R. E. (2000). Oocyte development in Hydra involves selection from competent precursor cells. Dev Biol 224, 326–338.PubMedGoogle Scholar
  90. Miyamoto, T., Iwasaki, H., Reizis, B., Ye, M., Graf, T., Weissman, I. L., and Akashi, K. (2002). Myeloid or lymphoid promiscuity as a critical step in hematopoietic lineage commitment. Dev Cell 3, 137–147.PubMedGoogle Scholar
  91. Moore, M. A., and Metcalf, D. (1970). Ontogeny of the haemopoietic system: yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br J Haematol 18, 279–296.PubMedGoogle Scholar
  92. Morrison, S. J., Hemmati, H. D., Wandycz, A. M., and Weissman, I. L. (1995a). The purification and characterization of fetal liver hematopoietic stem cells. Proc Natl Acad Sci USA 92, 10302–10306.Google Scholar
  93. Morrison, S. J., and Kimble, J. (2006). Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441, 1068–1074.PubMedGoogle Scholar
  94. Morrison, S. J., Uchida, N., and Weissman, I. L. (1995b). The biology of hematopoietic stem cells. Annu Rev Cell Dev Biol 11, 35–71.Google Scholar
  95. Nakorn, T. N., Miyamoto, T., and Weissman, I. L. (2003). Characterization of mouse clonogenic megakaryocyte progenitors. Proc Natl Acad Sci USA 100, 205–210.PubMedGoogle Scholar
  96. Nerlov, C., and Graf, T. (1998). PU.1 induces myeloid lineage commitment in multipotent hemat-opoietic progenitors. Genes Dev 12, 2403–2412.PubMedGoogle Scholar
  97. Nutt, S. L., Heavey, B., Rolink, A. G., and Busslinger, M. (1999). Commitment to the B-lymphoid lineage depends on the transcription factor Pax5 [see comments]. Nature 401, 556–562.PubMedGoogle Scholar
  98. Nutt, S. L., Metcalf, D., D'Amico, A., Polli, M., and Wu, L. (2005). Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. J Exp Med 201, 221–231.PubMedGoogle Scholar
  99. Ogawa, M. (1993). Differentiation and proliferation of hematopoietic stem cells. Blood 81, 2844–2853.PubMedGoogle Scholar
  100. Osawa, M., Hanada, K., Hamada, H., and Nakauchi, H. (1996). Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242–245.PubMedGoogle Scholar
  101. Ottersbach, K., and Dzierzak, E. (2005). The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Dev Cell 8, 377–387.PubMedGoogle Scholar
  102. Palis, J., Chan, R. J., Koniski, A., Patel, R., Starr, M., and Yoder, M. C. (2001). Spatial and temporal emergence of high proliferative potential hematopoietic precursors during murine embryogenesis. Proc Natl Acad Sci USA 98, 4528–4533.PubMedGoogle Scholar
  103. Park, I. K., Qian, D., Kiel, M., Becker, M. W., Pihalja, M., Weissman, I. L., Morrison, S. J., and Clarke, M. F. (2003). Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423, 302–305.PubMedGoogle Scholar
  104. Patt, H. M., and Maloney, M. A. (1972). Bone formation and resorption as a requirement for marrow development. Proc Soc Exp Biol Med 140, 205–207.PubMedGoogle Scholar
  105. Pharr, P. N., Ogawa, M., Hofbauer, A., and Longmore, G. D. (1994). Expression of an activated erythropoietin or a colony-stimulating factor 1 receptor by pluripotent progenitors enhances colony formation but does not induce differentiation. Proc Natl Acad Sci USA 91, 7482–7486.PubMedGoogle Scholar
  106. Pongubala, J. M., Northrup, D. L., Lancki, D. W., Medina, K. L., Treiber, T., Bertolino, E., Thomas, M., Grosschedl, R., Allman, D., and Singh, H. (2008). Transcription factor EBF restricts alternative lineage options and promotes B cell fate commitment independently of Pax5. Nat Immunol 9, 203–215.PubMedGoogle Scholar
  107. Pradhan, S., Bacolla, A., Wells, R. D., and Roberts, R. J. (1999). Recombinant human DNA (cyto-sine-5) methyltransferase. I. Expression, purification, and comparison of de novo and mainte nance methylation. J Biol Chem 274, 33002–33010.Google Scholar
  108. Pronk, C., Rossi, D., Månsson, R., Attema, J., Norddahl, G., Chan, C., Sigvardsson, M., Weissman, I., and Bryder, D. (2007). Elucidation of the phenotype, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy. Cell Stem Cell 1, 428–442.PubMedGoogle Scholar
  109. Rajasekhar, V. K., and Begemann, M. (2007). Concise review: roles of polycomb group proteins in development and disease: a stem cell perspective. Stem Cells 25, 2498–2510.PubMedGoogle Scholar
  110. Randall, T. D., and Weissman, I. L. (1997). Phenotypic and functional changes induced at the clonal level in hematopoietic stem cells after 5-fluorouracil treatment. Blood 89, 3596–3606.PubMedGoogle Scholar
  111. Rekhtman, N., Radparvar, F., Evans, T., and Skoultchi, A. I. (1999). Direct interaction of hemat-opoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells. Genes Dev 13, 1398–1411.PubMedGoogle Scholar
  112. Rizo, A., Vellenga, E., de Haan, G., and Schuringa, J. J. (2006). Signaling pathways in self-renewing hematopoietic and leukemic stem cells: do all stem cells need a niche? Hum Mol Genet 15, Spec No 2, R210–R219.PubMedGoogle Scholar
  113. Rossi, D. J., Bryder, D., and Weissman, I. L. (2007). Hematopoietic stem cell aging: mechanism and consequence. Exp Gerontol 42, 385–390.PubMedGoogle Scholar
  114. Rossi, D. J., Jamieson, C. H., and Weissman, I. L. (2008). Stems cells and the pathways to aging and cancer. Cell 132, 681–696.PubMedGoogle Scholar
  115. Sambandam, A., Maillard, I., Zediak, V. P., Xu, L., Gerstein, R. M., Aster, J. C., Pear, W. S., and Bhandoola, A. (2005). Notch signaling controls the generation and differentiation of early T lineage progenitors. Nat Immunol 6, 663–670.PubMedGoogle Scholar
  116. Samokhvalov, I. M., Samokhvalova, N. I., and Nishikawa, S. (2007). Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature 446, 1056–1061.PubMedGoogle Scholar
  117. Schmitt, T. M., and Zuniga-Pflucker, J. C. (2002). Induction of T cell development from hemat-opoietic progenitor cells by delta-like-1 in vitro. Immunity 17, 749–756.PubMedGoogle Scholar
  118. Schofield, R. (1978). The relationship between the spleen colony-forming cell and the haemopoi-etic stem cell. Blood Cells 4, 7–25.PubMedGoogle Scholar
  119. Schwarz, B. A., and Bhandoola, A. (2004). Circulating hematopoietic progenitors with T lineage potential. Nat Immunol 5, 953–960.PubMedGoogle Scholar
  120. Semerad, C. L., Poursine-Laurent, J., Liu, F., and Link, D. C. (1999). A role for G-CSF receptor signaling in the regulation of hematopoietic cell function but not lineage commitment or differentiation. Immunity 11, 153–161.PubMedGoogle Scholar
  121. Seymour, J. F., Lieschke, G. J., Grail, D., Quilici, C., Hodgson, G., and Dunn, A. R. (1997). Mice lacking both granulocyte colony-stimulating factor (CSF) and granulocyte-macrophage CSF have impaired reproductive capacity, perturbed neonatal granulopoiesis, lung disease, amy-loidosis, and reduced long-term survival. Blood 90, 3037–3049.PubMedGoogle Scholar
  122. Shivdasani, R. A., Fujiwara, Y., McDevitt, M. A., and Orkin, S. H. (1997). A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J 16, 3965–3973.PubMedGoogle Scholar
  123. Sitnicka, E., Brakebusch, C., Martensson, I. L., Svensson, M., Agace, W. W., Sigvardsson, M., Buza-Vidas, N., Bryder, D., Cilio, C. M., Ahlenius, H., et al. (2003). Complementary signaling through flt3 and interleukin-7 receptor alpha is indispensable for fetal and adult B cell genesis. J Exp Med 198, 1495–1506.PubMedGoogle Scholar
  124. Sitnicka, E., Bryder, D., Theilgaard-Monch, K., Buza-Vidas, N., Adolfsson, J., and Jacobsen, S. E. (2002). Key role of flt3 ligand in regulation of the common lymphoid progenitor but not in maintenance of the hematopoietic stem cell pool. Immunity 17, 463–472.PubMedGoogle Scholar
  125. Sitnicka, E., Buza-Vidas, N., Ahlenius, H., Cilio, C. M., Gekas, C., Nygren, J. M., Mansson, R., Cheng, M., Jensen, C. T., Svensson, M., et al. (2007). Critical role of FLT3 ligand in IL-7 receptor-independent T lymphopoiesis and regulation of lymphoid-primed multipotent progenitors. Blood 110, 2955–2964.PubMedGoogle Scholar
  126. Smith, L. G., Weissman, I. L., and Heimfeld, S. (1991). Clonal analysis of hematopoietic stem-cell differentiation in vivo. Proc Natl Acad Sci USA 88, 2788–2792.PubMedGoogle Scholar
  127. Spangrude, G. J., Heimfeld, S., and Weissman, I. L. (1988). Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62.PubMedGoogle Scholar
  128. Spivakov, M., and Fisher, A. G. (2007). Epigenetic signatures of stem-cell identity. Nat Rev Genet 8, 263–271.PubMedGoogle Scholar
  129. Stanley, E., Lieschke, G. J., Grail, D., Metcalf, D., Hodgson, G., Gall, J. A., Maher, D. W., Cebon, J., Sinickas, V., and Dunn, A. R. (1994). Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc Natl Acad Sci USA 91, 5592–5596.PubMedGoogle Scholar
  130. Stoffel, R., Ziegler, S., Ghilardi, N., Ledermann, B., de Sauvage, F. J., and Skoda, R. C. (1999). Permissive role of thrombopoietin and granulocyte colony-stimulating factor receptors in hematopoietic cell fate decisions in vivo. Proc Natl Acad Sci USA 96, 698–702.PubMedGoogle Scholar
  131. Tan, B. T., Park, C. Y., Ailles, L. E., and Weissman, I. L. (2006). The cancer stem cell hypothesis: a work in progress. Lab Invest 86, 1203–1207.PubMedGoogle Scholar
  132. Theopold, U., Li, D., Fabbri, M., Scherfer, C., and Schmidt, O. (2002). The coagulation of insect hemolymph. Cell Mol Life Sci 59, 363–372.PubMedGoogle Scholar
  133. Till, J. E., and Mc, C. E. (1961). A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14, 213–222.PubMedGoogle Scholar
  134. Ueno, H., and Weissman, I. L. (2006). Clonal analysis of mouse development reveals a polyclonal origin for yolk sac blood islands. Dev Cell 11, 519–533.PubMedGoogle Scholar
  135. Ueno, H., and Weissman, I. L. (2007). Stem cells: blood lines from embryo to adult. Nature 446, 996–997.PubMedGoogle Scholar
  136. Wang, J. H., Nichogiannopoulou, A., Wu, L., Sun, L., Sharpe, A. H., Bigby, M., and Georgopoulos, K. (1996). Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 5, 537–549.PubMedGoogle Scholar
  137. Veiby, O. P., Lyman, S. D., and Jacobsen, S. E. (1996). Combined signaling through interleukin-7 receptors and flt3 but not c-kit potently and selectively promotes B-cell commitment and differentiation from uncommitted murine bone marrow progenitor cells. Blood 88, 1256–1265.PubMedGoogle Scholar
  138. Wilson, A., and Trumpp, A. (2006). Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6, 93–106.PubMedGoogle Scholar
  139. Vire, E., Brenner, C., Deplus, R., Blanchon, L., Fraga, M., Didelot, C., Morey, L., Van Eynde, A., Bernard, D., Vanderwinden, J. M., et al. (2006). The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874.PubMedGoogle Scholar
  140. Wolf, N. S., Kone, A., Priestley, G. V., and Bartelmez, S. H. (1993). In vivo and in vitro characterization of long-term repopulating primitive hematopoietic cells isolated by sequential Hoechst 33342-rhodamine 123 FACS selection. Exp Hematol 21, 614–622.PubMedGoogle Scholar
  141. Wu, H., Liu, X., Jaenisch, R., and Lodish, H. F. (1995). Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 83, 59–67.PubMedGoogle Scholar
  142. Xie, H., Ye, M., Feng, R., and Graf, T. (2004). Stepwise reprogramming of B cells into macro-phages. Cell 117, 663–676.PubMedGoogle Scholar
  143. Ye, M., Iwasaki, H., Laiosa, C. V., Stadtfeld, M., Xie, H., Heck, S., Clausen, B., Akashi, K., and Graf, T. (2003). Hematopoietic stem cells expressing the myeloid lysozyme gene retain long-term, multilineage repopulation potential. Immunity 19, 689–699.PubMedGoogle Scholar
  144. Yoshida, T., Ng, S. Y., Zuniga-Pflucker, J. C., and Georgopoulos, K. (2006). Early hematopoietic lineage restrictions directed by Ikaros. Nat Immunol 7, 382–391.PubMedGoogle Scholar
  145. Zhang, J., Niu, C., Ye, L., Huang, H., He, X., Tong, W. G., Ross, J., Haug, J., Johnson, T., Feng, J. Q., et al. (2003). Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836–841.PubMedGoogle Scholar
  146. Zhang, P., Behre, G., Pan, J., Iwama, A., Wara-Aswapati, N., Radomska, H. S., Auron, P. E., Tenen, D. G., and Sun, Z. (1999). Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proc Natl Acad Sci USA 96, 8705–8710.PubMedGoogle Scholar
  147. Zhuang, Y., Soriano, P., and Weintraub, H. (1994). The helix-loop-helix gene E2A is required for B cell formation. Cell 79, 875–884.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Robert Mansson
  • Sasan Zandi
  • David Bryder
  • Mikael Sigvardsson
    • 1
  1. 1.Department for Clinical and Experimental Research, Faculty for Health Sciences, Linköping Sweden, Lund Stem Cell Center and the Department for ImmunologyMedical Faculty in LundSweden

Personalised recommendations