Targeting Signal Transduction Pathways in Hematopoietic Disorders

  • Li Zhou
  • Amit Verma


Hematopoiesis is the process during which pluripotent stem cells give rise to lineage committed progenitors that differentiate into mature erythroid, myeloid, and lymphoid cells. This is a finely regulated process that is required for optimal maintenance of peripheral blood counts. Alterations in hematopoiesis can lead to a variety of bone marrow failure syndromes and hematological malignancies. Treatment of these diseases requires a detailed study of pathogenic mechanisms that lead to hematopoietic failure.


Tumor Necrosis Factor Aplastic Anemia Myelodysplastic Syndrome Stem Cell Factor Hematopoietic Progenitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguayo, A., Kantarjian, H., Manshouri, T., Gidel, C., Estey, E., Thomas, D., Koller, C., Estrov, Z., O'Brien, S., Keating, M., et al. 2000. Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood 96 :2240–2245.PubMedGoogle Scholar
  2. Aizawa, S., Nakano, M., Iwase, O., Yaguchi, M., Hiramoto, M., Hoshi, H., Nabeshima, R., Shima, D., Handa, H., and Toyama, K. 1999. Bone marrow stroma from refractory anemia of myelodysplastic syndrome is defective in its ability to support normal CD34-positive cell proliferation and differentiation in vitro . Leuk Res 23:239–246.PubMedCrossRefGoogle Scholar
  3. Aizawa, S., Hiramoto, M., Hoshi, H., Toyama, K., Shima, D., and Handa, H. 2000. Establishment of stromal cell line from an MDS RA patient which induced an apoptotic change in hematopoietic and leukemic cells in vitro . Exp Hematol 28:148–155.PubMedCrossRefGoogle Scholar
  4. Akiyama, T., Matsunaga, T., Terui, T., Miyanishi, K., Tanaka, I., Sato, T., Kuroda, H., Takimoto, R., Takayama, T., Kato, J., et al. 2005. Involvement of transforming growth factor-beta and thrombopoietin in the pathogenesis of myelodysplastic syndrome with myelofibrosis . Leukemia 19:1558–1566.PubMedCrossRefGoogle Scholar
  5. Allampallam, K., Shetty, V., Hussaini, S., Mazzoran, L., Zorat, F., Huang, R., and Raza, A. 1999. Measurement of mRNA expression for a variety of cytokines and its receptors in bone marrows of patients with myelodysplastic syndromes . Anticancer Res 19:5323–5328.PubMedGoogle Scholar
  6. Allampallam, K., Shetty, V., Mundle, S., Dutt, D., Kravitz, H., Reddy, P.L., Alvi, S., Galili, N., Saberwal, G.S., Anthwal, S., et al. 2002. Biological significance of proliferation, apoptosis, cytokines, and monocyte/macrophage cells in bone marrow biopsies of 145 patients with myelodysplastic syndrome. Int J Hematol 75:289–297.PubMedCrossRefGoogle Scholar
  7. Anderson, K.C. 2005. Lenalidomide and thalidomide: mechanisms of action — similarities and differences. Semin Hematol 42:S3–S8.PubMedCrossRefGoogle Scholar
  8. Bagby, G.C., Jr. 1989. Interleukin-1 and hematopoiesis. Blood Rev 3:152–161.PubMedCrossRefGoogle Scholar
  9. Bellamy, W.T., Richter, L., Sirjani, D., Roxas, C., Glinsmann-Gibson, B., Frutiger, Y., Grogan, T.M., and List, A.F. 2001. Vascular endothelial cell growth factor is an autocrine promoter of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood 97:1427–1434.PubMedCrossRefGoogle Scholar
  10. Boultwood, J., Pellagatti, A., Cattan, H., Lawrie, C.H., Giagounidis, A., Malcovati, L., Della Porta, M.G., Jadersten, M., Killick, S., Fidler, C., et al. 2007. Gene expression profiling of CD34+ cells in patients with the 5q- syndrome . Br J Haematol 139:578–589.PubMedCrossRefGoogle Scholar
  11. Brinkman, B.M., Telliez, J.B., Schievella, A.R., Lin, L.L., and Goldfeld, A.E. 1999. Engagement of tumor necrosis factor (TNF) receptor 1 leads to ATF-2- and p38 mitogen-activated protein kinase-dependent TNF- α gene expression. J Biol Chem 274:30882–30886.PubMedCrossRefGoogle Scholar
  12. Claessens, Y.E., Park, S., Dubart-Kupperschmitt, A., Mariot, V., Garrido, C., Chretien, S., Dreyfus, F., Lacombe, C., Mayeux, P., and Fontenay, M. 2005. Rescue of early stage myelod- ysplastic syndrome-deriving erythroid precursors by the ectopic expression of a dominant negative form of FADD . Blood105:4035–4042.PubMedCrossRefGoogle Scholar
  13. Corral, L.G., Haslett, P.A., Muller, G.W., Chen, R., Wong, L.M., Ocampo, C.J., Patterson, R.T., Stirling, D.I., and Kaplan, G. 1999. Differential cytokine modulation and T cell activation bytwo distinct classes of thalidomide analogues that are potent inhibitors of TNF- α J Immunol 163:380–386.PubMedGoogle Scholar
  14. Deeg, H.J. 2002. Marrow stroma in MDS: culprit or bystander? Leuk Res 26:687–688.PubMedCrossRefGoogle Scholar
  15. Deeg, H.J., Beckham, C., Loken, M.R., Bryant, E., Lesnikova, M., Shulman, H.M., and Gooley, T. 2000 . Negative regulators of hemopoiesis and stroma function in patients with myelodysplastic syndrome. Leuk Lymphoma 37:405–414.PubMedGoogle Scholar
  16. Deeg, H.J., Gotlib, J., Beckham, C., Dugan, K., Holmberg, L., Schubert, M., Appelbaum, F., and Greenberg, P. 2002. Soluble TNF receptor fusion protein (etanercept) for the treatment of myelodysplastic syndrome: a pilot study . Leukemia 16:162–164.PubMedCrossRefGoogle Scholar
  17. Dinarello, C.A. 1996. Biologic basis for interleukin-1 in disease. Blood 87:2095–2147.PubMedGoogle Scholar
  18. Dredge, K., Marriott, J.B., and Dalgleish, A.G. 2002. Immunological effects of thalidomide and its chemical and functional analogs . Crit Rev Immunol 22:425–437.PubMedGoogle Scholar
  19. Dufour, C., Corcione, A., Svahn, J., Haupt, R., Poggi, V., Beka'ssy, A.N., Scime, R., Pistorio, A., and Pistoia, V. 2003. TNF-α and IFN- γ are overexpressed in the bone marrow of Fanconi anemia patients and TNF- α suppresses erythropoiesis in vitro . Blood 102:2053–2059.PubMedCrossRefGoogle Scholar
  20. Ebert, B.L., Pretz, J., Bosco, J., Chang, C.Y., Tamayo, P., Galili, N., Raza, A., Root, D.E., Attar, E., Ellis, S.R., et al. 2008. Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 451:335–339.PubMedCrossRefGoogle Scholar
  21. Epperson, D.E., Nakamura, R., Saunthararajah, Y., Melenhorst, J., and Barrett, A.J. 2001. Oligoclonal T cell expansion in myelodysplastic syndrome: evidence for an autoimmune process. Leuk Res 25:1075–1083.PubMedCrossRefGoogle Scholar
  22. Fan, X., Valdimarsdottir, G., Larsson, J., Brun, A., Magnusson, M., Jacobsen, S.E., ten Dijke, P., and Karlsson, S. 2002. Transient disruption of autocrine TGF-β signaling leads to enhanced survival and proliferation potential in single primitive human hemopoietic progenitor cells . J Immunol 168:755–762.PubMedGoogle Scholar
  23. Flores-Figueroa, E., Arana-Trejo, R.M., Gutierrez-Espindola, G., Perez-Cabrera, A., and Mayani, H. 2005 . Mesenchymal stem cells in myelodysplastic syndromes: phenotypic and cytogenetic characterization. Leuk Res 29:215–224.PubMedCrossRefGoogle Scholar
  24. Flygare, J., Aspesi, A., Bailey, J.C., Miyake, K., Caffrey, J.M., Karlsson, S., and Ellis, S.R. 2007. Human RPS19 , the gene mutated in Diamond-Blackfan anemia, encodes a ribosomal protein required for the maturation of 40S ribosomal subunits . Blood 109:980–986.PubMedCrossRefGoogle Scholar
  25. Giles, F.J., Stopeck, A.T., Silverman, L.R., Lancet, J.E., Cooper, M.A., Hannah, A.L., Cherrington, J.M., O'Farrell, A.M., Yuen, H.A., Louie, S.G., et al. 2003. SU5416, a small molecule tyrosine kinase receptor inhibitor, has biologic activity in patients with refractory acute myeloid leukemia or myelodysplastic syndromes . Blood 102:795–801.PubMedCrossRefGoogle Scholar
  26. Greenberg, P.L. 1998. Apoptosis and its role in the myelodysplastic syndromes: implications for disease natural history and treatment . Leuk Res 22:1123–1136.PubMedCrossRefGoogle Scholar
  27. Griffin, J.D., Rambaldi, A., Vellenga, E., Young, D.C., Ostapovicz, D., and Cannistra, S.A. 1987. Secretion of interleukin-1 by acute myeloblastic leukemia cells in vitro induces endothelial cells to secrete colony stimulating factors . Blood 70:1218–1221.PubMedGoogle Scholar
  28. Gyulai, Z., Balog, A., Borbenyi, Z., and Mandi, Y. 2005. Genetic polymorphisms in patients with myelodysplastic syndrome. Acta Microbiol Immunol Hung 52:463–475.PubMedCrossRefGoogle Scholar
  29. He, W., Dorn, D.C., Erdjument-Bromage, H., Tempst, P., Moore, M.A., and Massague, J. 2006.Hematopoiesis controlled by distinct TIF1 γ and Smad4 branches of the TGF β pathway. Cell 125:929–941.PubMedCrossRefGoogle Scholar
  30. Hellstrom-Lindberg, E. 1995. Efficacy of erythropoietin in the myelodysplastic syndromes: a meta-analysis of 205 patients from 17 studies . Br J Haematol 89:67–71.PubMedGoogle Scholar
  31. Hellstrom-Lindberg, E., Ahlgren, T., Beguin, Y., Carlsson, M., Carneskog, J., Dahl, I.M., Dybedal, I., Grimfors, G., Kanter-Lewensohn, L., Linder, O., et al. 1998. Treatment of anemia in myelodysplastic syndromes with granulocyte colony-stimulating factor plus erythropoietin: results from a randomized phase II study and long-term follow-up of 71 patients . Blood 92:68–75.Google Scholar
  32. Imai, Y., Kurokawa, M., Izutsu, K., Hangaishi, A., Maki, K., Ogawa, S., Chiba, S., Mitani, K., and Hirai, H. 2001. Mutations of the Smad4 gene in acute myelogeneous leukemia and their functional implications in leukemogenesis . Oncogene 20:88–96.PubMedCrossRefGoogle Scholar
  33. Italian Cooperative Study Group for rHuEpo in Myelodysplastic Syndromes. 1998. A randomized double-blind placebo-controlled study with subcutaneous recombinant human erythropoietin in patients with low-risk myelodysplastic syndromes . Br J Haematol 103:1070–1074.CrossRefGoogle Scholar
  34. Izutsu, K., Kurokawa, M., Imai, Y., Maki, K., Mitani, K., and Hirai, H. 2001. The corepressor CtBP interacts with Evi-1 to repress transforming growth factor beta signaling . Blood 97:2815–2822.PubMedCrossRefGoogle Scholar
  35. Jacobsen, F.W., Stokke, T., and Jacobsen, S.E. 1995. Transforming growth factor-beta potently inhibits the viability-promoting activity of stem cell factor and other cytokines and induces apoptosis of primitive murine hematopoietic progenitor cells . Blood 86:2957–2966.PubMedGoogle Scholar
  36. Jakubowiak, A., Pouponnot, C., Berguido, F., Frank, R., Mao, S., Massague, J., and Nimer, S.D. 2000 . Inhibition of the transforming growth factor beta 1 signaling pathway by the AML1/ ETO leukemia-associated fusion protein . J Biol Chem 275:40282–40287.PubMedCrossRefGoogle Scholar
  37. Johnson, G.L. and Lapadat, R. 2002. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases . Science 298:1911–1912.PubMedCrossRefGoogle Scholar
  38. Keller, J.R., Mantel, C., Sing, G.K., Ellingsworth, L.R., Ruscetti, S.K., and Ruscetti, F.W. 1988. Transforming growth factor beta 1 selectively regulates early murine hematopoietic progenitors and inhibits the growth of IL-3-dependent myeloid leukemia cell lines . J Exp Med 168:737–750.PubMedCrossRefGoogle Scholar
  39. Keller, J.R., McNiece, I.K., Sill, K.T., Ellingsworth, L.R., Quesenberry, P.J., Sing, G.K., and Ruscetti, F.W. 1990. Transforming growth factor beta directly regulates primitive murine hematopoietic cell proliferation . Blood 75:596–602.PubMedGoogle Scholar
  40. Kelley, L.L., Green, W.F., Hicks, G.G., Bondurant, M.C., Koury, M.J., and Ruley, H.E. 1994. Apoptosis in erythroid progenitors deprived of erythropoietin occurs during the G1 and S phases of the cell cycle without growth arrest or stabilization of wild-type p53 . Mol Cell Biol 14:4183–4192.PubMedGoogle Scholar
  41. Kitagawa, M., Saito, I., Kuwata, T., Yoshida, S., Yamaguchi, S., Takahashi, M., Tanizawa, T., Kamiyama, R., and Hirokawa, K. 1997. Overexpression of tumor necrosis factor (TNF)-α and interferon (IFN)- γ by bone marrow cells from patients with myelodysplastic syndromes . Leukemia 11:2049–2054.PubMedCrossRefGoogle Scholar
  42. Kook, H., Zeng, W., Guibin, C., Kirby, M., Young, N.S., and Maciejewski, J.P. 2001. Increased cytotoxic T cells with effector phenotype in aplastic anemia and myelodysplasia . Exp Hematol 29:1270–1277.PubMedCrossRefGoogle Scholar
  43. Kotlyarov, A., Neininger, A., Schubert, C., Eckert, R., Birchmeier, C., Volk, H.D., and Gaestel, M. 1999 . MAPKAP kinase 2 is essential for LPS-induced TNF- α biosynthesis. Nat Cell Biol 1:94–97.0PubMedCrossRefGoogle Scholar
  44. Krystal, G., Lam, V., Dragowska, W., Takahashi, C., Appel, J., Gontier, A., Jenkins, A., Lam, H., Quon, L., and Lansdorp, P. 1994. Transforming growth factor beta 1 is an inducer of erythroid differentiation. J Exp Med 180:851–860.PubMedCrossRefGoogle Scholar
  45. Kumar, S., Boehm, J., and Lee, J.C. 2003. p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases . Nat Rev Drug Discov 2:717–726.PubMedCrossRefGoogle Scholar
  46. Kurzrock, R., Kantarjian, H., Wetzler, M., Estrov, Z., Estey, E., Troutman-Worden, K., Gutterman, J.U., and Talpaz, M. 1993. Ubiquitous expression of cytokines in diverse leukemias of lymphoid and myeloid lineage . Exp Hematol 21:80–85.PubMedGoogle Scholar
  47. Larsson, J., Blank, U., Helgadottir, H., Bjornsson, J.M., Ehinger, M., Goumans, M.J., Fan, X., Leveen, P., and Karlsson, S. 2003. TGF-α signaling-deficient hematopoietic stem cells have normal self-renewal and regenerative ability in vivo despite increased proliferative capacity in vitro. Blood 102:3129–3135.PubMedCrossRefGoogle Scholar
  48. Lee, D.K., Kim, B.C., Brady, J.N., Jeang, K.T., and Kim, S.J. 2002. Human T-cell lymphotropic virus type 1 tax inhibits transforming growth factor-beta signaling by blocking the association of Smad proteins with Smad-binding element . J Biol Chem 277:33766–33775.PubMedCrossRefGoogle Scholar
  49. Lin, H.K., Bergmann, S., and Pandolfi, P.P. 2004. Cytoplasmic PML function in TGF-β signalling. Nature 431:205–211.PubMedCrossRefGoogle Scholar
  50. List, A., Kurtin, S., Roe, D.J., Buresh, A., Mahadevan, D., Fuchs, D., Rimsza, L., Heaton, R., Knight, R., and Zeldis, J.B. 2005. Efficacy of lenalidomide in myelodysplastic syndromes. N Engl J Med 352:549–557.PubMedCrossRefGoogle Scholar
  51. Liu, J.M. and Ellis, S.R. 2006. Ribosomes and marrow failure: coincidental association or molecular paradigm? Blood 107:4583–4588.PubMedCrossRefGoogle Scholar
  52. Marriott, J.B., Clarke, I.A., Dredge, K., Muller, G., Stirling, D., and Dalgleish, A.G. 2002. Thalidomide and its analogues have distinct and opposing effects on TNF- α and TNFR2 during co-stimulation of both CD4(+) and CD8(+) T cells . Clin Exp Immunol 130:75–84.PubMedCrossRefGoogle Scholar
  53. Melchert, M., Kale, V., and List, A. 2007. The role of lenalidomide in the treatment of patients with chromosome 5q deletion and other myelodysplastic syndromes . Curr Opin Hematol 14:123–129.PubMedCrossRefGoogle Scholar
  54. Miller, K., Kim, H.T., Greenberg, P., Van der Jagt, R., Bennett, J., Tallman, M.S., Paietta, E., Dewald, G., Houston, J.G., Thomas, M., et al. 2004. Phase III prospective randomized trial of EPO with or without G-CSF versus supportive therapy alone in the treatment of myelodysplastic syndromes (MDS): results of the ECOG-CLSG trial(E1996) . Blood 104:70.Google Scholar
  55. Millot, G.A., Svinarchuk, F., Lacout, C., Vainchenker, W., and Dumenil, D. 2001. The granulocyte colony-stimulating factor receptor supports erythroid differentiation in the absence of the erythropoietin receptor or Stat5 . Br J Haematol 112:449–458.PubMedCrossRefGoogle Scholar
  56. Mohindru, M., Pahanish, P., Katsoulidis, E., Collins, R., Rogers, T., Navas, T., Higgins, L.S., Platanias, L.C., and Verma, A. 2004. Novel P38 MAP kinase inhibitor and anti-P38 RNA interference as potential therapeutic approaches in myelodysplastic syndromes . Blood 104:470.000Google Scholar
  57. Molldrem, J.J., Leifer, E., Bahceci, E., Saunthararajah, Y., Rivera, M., Dunbar, C., Liu, J., Nakamura, R., Young, N.S., and Barrett, A.J. 2002. Antithymocyte globulin for treatment of the bone marrow failure associated with myelodysplastic syndromes . Ann Intern Med 137:156–163.0PubMedGoogle Scholar
  58. Moreira, A.L., Sampaio, E.P., Zmuidzinas, A., Frindt, P., Smith, K.A., and Kaplan, G. 1993. Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing mRNA degradation. J Exp Med 177:1675–1680.PubMedCrossRefGoogle Scholar
  59. Mori, N., Morishita, M., Tsukazaki, T., Giam, C.Z., Kumatori, A., Tanaka, Y., and Yamamoto, N. 2001 . Human T-cell leukemia virus type I oncoprotein Tax represses Smad-dependent transforming growth factor beta signaling through interaction with CREB-binding protein/p300 . Blood 97:2137–2144.PubMedCrossRefGoogle Scholar
  60. Mundle, S.D., Reza, S., Ali, A., Mativi, Y., Shetty, V., Venugopal, P., Gregory, S.A., and Raza, A. 1999 . Correlation of tumor necrosis factor alpha (TNF α ) with high Caspase 3-like activity in myelodysplastic syndromes. Cancer Lett 140:201–207.PubMedCrossRefGoogle Scholar
  61. Narendran, A., Hawkins, L.M., Ganjavi, H., Vanek, W., Gee, M.F., Barlow, J.W., Johnson, G., Malkin, D., and Freedman, M.H. 2004. Characterization of bone marrow stromal abnormalities in a patient with constitutional trisomy 8 mosaicism and myelodysplastic syndrome .Pediatr Hematol Oncol 21:209–221.PubMedCrossRefGoogle Scholar
  62. Navas, T., Nguyen, A.N., Ma, J., Stebbins, E.G., Haghnazari, E., Heaton, R., List, A., and Higgins, L.S. 2004. Inhibition of p38 MAPK by SCIO-469 suppresses TNF generation and promotes CD34+ cell survival in an in vitro MDS cell culture model . Blood 104:3424.CrossRefGoogle Scholar
  63. Navas, T.A., Mohindru, M., Estes, M., Ma, J.Y., Sokol, L., Pahanish, P., Parmar, S., Haghnazari, E., Zhou, L., Collins, R., et al. 2006. Inhibition of overactivated p38 MAPK can restore hematopoiesis in myelodysplastic syndrome progenitors . Blood 108:4170–4177.PubMedCrossRefGoogle Scholar
  64. Ohta, M., Greenberger, J.S., Anklesaria, P., Bassols, A., and Massague, J. 1987. Two forms of transforming growth factor-beta distinguished by multipotential haematopoietic progenitor cells. Nature 329:539–541.PubMedCrossRefGoogle Scholar
  65. Oshima, M., Oshima, H., and Taketo, M.M. 1996. TGF-03B2; receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis . Dev Biol 179:297–302.PubMedCrossRefGoogle Scholar
  66. Pellagatti, A., Jadersten, M., Forsblom, A.M., Cattan, H., Christensson, B., Emanuelsson, E.K., Merup, M., Nilsson, L., Samuelsson, J., Sander, B., et al. 2007. Lenalidomide inhibits the malignant clone and up-regulates the SPARC gene mapping to the commonly deleted region in 5q- syndrome patients . Proc Natl Acad Sci USA 104:11406–11411.PubMedCrossRefGoogle Scholar
  67. Platanias, L.C. 2003. Map kinase signaling pathways and hematologic malignancies. Blood 101:4667–4679.0PubMedCrossRefGoogle Scholar
  68. Powers, M.P., Nishino, H., Luo, Y., Raza, A., Vanguri, A., Rice, L., Zu, Y., and Chang, C.C. 2007. Polymorphisms in TGFb and TNF a are associated with the myelodysplastic syndrome phenotype. Arch Pathol Lab Med 131:1789–1793.PubMedGoogle Scholar
  69. Raza, A., Meyer, P., Dutt, D., Zorat, F., Lisak, L., Nascimben, F., du Randt, M., Kaspar, C., Goldberg, C., Loew, J., et al. 2001. Thalidomide produces transfusion independence in longstanding refractory anemias of patients with myelodysplastic syndromes . Blood 98:958–965.PubMedCrossRefGoogle Scholar
  70. Raza, A., Candoni, A., Khan, U., Lisak, L., Tahir, S., Silvestri, F., Billmeier, J., Alvi, M.I., Mumtaz, M., Gezer, S., et al. 2004. Remicade as TNF suppressor in patients with myelodysplastic syndromes. Leuk Lymphoma 45:2099–2104.PubMedCrossRefGoogle Scholar
  71. Risitano, A.M., Kook, H., Zeng, W., Chen, G., Young, N.S., and Maciejewski, J.P. 2002. Oligoclonal and polyclonal CD4 and CD8 lymphocytes in aplastic anemia and paroxysmal nocturnal hemoglobinuria measured by V beta CDR3 spectratyping and flow cytometry . Blood 100:178–183.PubMedCrossRefGoogle Scholar
  72. Roboz, G.J., Giles, F.J., List, A.F., Cortes, J.E., Carlin, R., Kowalski, M., Bilic, S., Masson, E., Rosamilia, M., Schuster, M.W., et al. 2006. Phase 1 study of PTK787/ZK 222584, a small molecule tyrosine kinase receptor inhibitor, for the treatment of acute myeloid leukemia and myelodysplastic syndrome. Leukemia 20:952–957.PubMedCrossRefGoogle Scholar
  73. Romerio, F. and Zella, D. 2002. MEK and ERK inhibitors enhance the anti-proliferative effect of interferon- α2b. FASEB J 16:1680–1682.PubMedGoogle Scholar
  74. Rosenfeld, C. and Bedell, C. 2002. Pilot study of recombinant human soluble tumor necrosis factor receptor (TNFR:Fc) in patients with low risk myelodysplastic syndrome . Leuk Res 26:721–724.PubMedCrossRefGoogle Scholar
  75. Sargiacomo, M., Valtieri, M., Gabbianelli, M., Pelosi, E., Testa, U., Camagna, A., and Peschle, C. 1991 . Pure human hematopoietic progenitors: direct inhibitory effect of transforming growth factors-beta 1 and -beta 2 . Ann N Y Acad Sci 628:84–91.PubMedCrossRefGoogle Scholar
  76. Saunthararajah, Y., Nakamura, R., Wesley, R., Wang, Q.J., and Barrett, A.J. 2003. A simple method to predict response to immunosuppressive therapy in patients with myelodysplastic syndrome. Blood 102:3025–3027.PubMedCrossRefGoogle Scholar
  77. Selleri, C., Maciejewski, J.P., Catalano, L., Ricci, P., Andretta, C., Luciano, L., and Rotoli, B. 2002 . Effects of cyclosporine on hematopoietic and immune functions in patients with hypoplastic myelodysplasia: in vitro and in vivo studies . Cancer 95:1911–1922.PubMedCrossRefGoogle Scholar
  78. Shull, M.M., Ormsby, I., Kier, A.B., Pawlowski, S., Diebold, R.J., Yin, M., Allen, R., Sidman, C., Proetzel, G., Calvin, D., et al. 1992. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease . Nature 359:693–699.PubMedCrossRefGoogle Scholar
  79. Sitnicka, E., Ruscetti, F.W., Priestley, G.V., Wolf, N.S., and Bartelmez, S.H. 1996. Transforming growth factor beta 1 directly and reversibly inhibits the initial cell divisions of long-term repopulating hematopoietic stem cells . Blood 88:82–88.PubMedGoogle Scholar
  80. Sloand, E.M., Rezvani, K., Barrett, J., Mainwaring, L., Kurlander, R., Gostick, E., Ramkissoon, S., Tang, Y., Douek, D., Price, D., et al. 2004. Myelodysplasia with Trisomy 8 is associated with a cytotoxic CD8 T cell immune response to Wilms tumor-1 protein (WT1) . Blood 104:474.CrossRefGoogle Scholar
  81. Sloand, E.M., Mainwaring, L., Fuhrer, M., Ramkissoon, S., Risitano, A.M., Keyvanafar, K., Lu, J., Basu, A., Barrett, A.J., and Young, N.S. 2005. Preferential suppression of trisomy 8 versus normal hematopoietic cell growth by autologous lymphocytes in patients with trisomy 8 myelodysplastic syndrome. Blood 106:841–851.PubMedCrossRefGoogle Scholar
  82. Sokol, L., Cripe, L., Kantarjian, H., Sekeres, M., Parmar, S., Greenberg, P., Goldberg, S., Bhushan, V., Shammo, J., Hohl, R., et al. 2006. Phase I/II, Randomized, multicenter multicenter, dose, doseascension study of the p38 MAPK inhibitor ascension study of the p38 MAPK inhibitor Scio Scio-469 in patients with myelodysplastic syndromes (MDS) . Am Soc Hematol 108:2657.Google Scholar
  83. Sood, R., Talwar-Trikha, A., Chakrabarti, S.R., and Nucifora, G. 1999. MDS1/EVI1 enhances TGF- β 1 signaling and strengthens its growth-inhibitory effect but the leukemia-associated fusion protein AML1/MDS1/EVI1, product of the t(3;21), abrogates growth-inhibition in response to TGF- β1. Leukemia 13:348–357.PubMedCrossRefGoogle Scholar
  84. Stasi, R. and Amadori, S. 2002. Infliximab chimaeric anti-tumour necrosis factor alpha monoclonal antibody treatment for patients with myelodysplastic syndromes . Br J Haematol 116:334–337.PubMedGoogle Scholar
  85. Tai, Y.T., Li, X.F., Catley, L., Coffey, R., Breitkreutz, I., Bae, J., Song, W., Podar, K., Hideshima, T., Chauhan, D., et al. 2005. Immunomodulatory drug lenalidomide (CC-5013, IMiD3) augments anti-CD40 SGN-40-induced cytotoxicity in human multiple myeloma: clinical implications . Cancer Res 65:11712–11720.PubMedCrossRefGoogle Scholar
  86. Taketazu, F., Miyagawa, K., Ichijo, H., Oshimi, K., Mizoguchi, H., Hirai, H., Miyazono, K., and Takaku, F. 1992. Decreased level of transforming growth factor-beta in blood lymphocytes of patients with aplastic anemia . Growth Factors 6:85–90.PubMedCrossRefGoogle Scholar
  87. Tauro, S., Hepburn, M.D., Bowen, D.T., and Pippard, M.J. 2001. Assessment of stromal function, and its potential contribution to deregulation of hematopoiesis in the myelodysplastic syndromes. Haematologica 86:1038–1045.PubMedGoogle Scholar
  88. Uddin, S., Lekmine, F., Sharma, N., Majchrzak, B., Mayer, I., Young, P.R., Bokoch, G.M., Fish, E.N., and Platanias, L.C. 2000. The Rac1/p38 mitogen-activated protein kinase pathway is required for interferon alpha-dependent transcriptional activation but not serine phosphorylation of Stat proteins . J Biol Chem 275:27634–27640.PubMedGoogle Scholar
  89. Verhelle, D., Corral, L.G., Wong, K., Mueller, J.H., Moutouh-de Parseval, L., Jensen-Pergakes, K., Schafer, P.H., Chen, R., Glezer, E., Ferguson, G.D., et al. 2007. Lenalidomide and CC-4047 inhibit the proliferation of malignant B cells while expanding normal CD34+ progenitor cells . Cancer Res 67:746–755.PubMedCrossRefGoogle Scholar
  90. Verma, A. and List, A.F. 2005. Cytokine targets in the treatment of myelodysplastic syndromes. Curr Hematol Rep 4:429–435.PubMedGoogle Scholar
  91. Verma, A., Deb, D.K., Sassano, A., Kambhampati, S., Wickrema, A., Uddin, S., Mohindru, M., Van Besien, K., and Platanias, L.C. 2002a. Cutting edge: activation of the p38 mitogen-activated protein kinase signaling pathway mediates cytokine-induced hemopoietic suppression in aplastic anemia . J Immunol 168:5984–5988.Google Scholar
  92. Verma, A., Deb, D.K., Sassano, A., Uddin, S., Varga, J., Wickrema, A., and Platanias, L.C. 2002b. Activation of the p38 mitogen-activated protein kinase mediates the suppressive effects of type I interferons and transforming growth factor-beta on normal hematopoiesis . J Biol Chem 277:7726–7735.CrossRefGoogle Scholar
  93. Welsh, J.P., Rutherford, T.R., Flynn, J., Foukaneli, T., Gordon-Smith, E.C., and Gibson, F.M. 2004 . In vitro effects of interferon-gamma and tumor necrosis factor-alpha on CD34² bone marrow progenitor cells from aplastic anemia patients and normal donors . Hematol J 5:39–46.PubMedCrossRefGoogle Scholar
  94. Werner, S.L., Barken, D., and Hoffmann, A. 2005. Stimulus specificity of gene expression programs determined by temporal control of IKK activity . Science 309:1857–1861.PubMedCrossRefGoogle Scholar
  95. Westwood, N.B. and Mufti, G.J. 2003. Apoptosis in the myelodysplastic syndromes. Curr Hematol Rep 2:186–192.PubMedGoogle Scholar
  96. Wierenga, A.T., Eggen, B.J., Kruijer, W., and Vellenga, E. 2002. Proteolytic degradation of Smad4 in extracts of AML blasts . Leuk Res 26:1105–1111.PubMedCrossRefGoogle Scholar
  97. Wolfraim, L.A., Fernandez, T.M., Mamura, M., Fuller, W.L., Kumar, R., Cole, D.E., Byfield, S., Felici, A., Flanders, K.C., Walz, T.M., et al. 2004. Loss of Smad3 in acute T-cell lymphoblastic leukemia. N Engl J Med 351:552–559.PubMedCrossRefGoogle Scholar
  98. Yoon, S.Y., Li, C.Y., Lloyd, R.V., and Tefferi, A. 2000. Bone marrow histochemical studies of fibrogenic cytokines and their receptors in myelodysplastic syndrome with myelofibrosis and related disorders. Int J Hematol 72:337–342.PubMedGoogle Scholar
  99. Young, N.S. 2002. Acquired aplastic anemia. Ann Intern Med 136:534–546.PubMedGoogle Scholar
  100. Young, N.S. and Maciejewski, J. 1997. The pathophysiology of acquired aplastic anemia. N Engl J Med 336:1365–1372.PubMedCrossRefGoogle Scholar
  101. Zhou, L.N., Pahanish, A., Hayman, P., Gundabolu, J.K., Chubak, A., Parmar, S., Garry, D., Wickrema, A., Navas, T., Higgins, L., Friedman, E., List, A., Bitzer, M., Verma, A. 2007. Inhibition of the TGF- receptor I can stimulate hematopoiesis in primary myelodysplastic syndrome progenitors as well as in TGF-driven transgenic mouse model of bone marrow failure. Blood 110.Google Scholar
  102. Zorat, F., Shetty, V., Dutt, D., Lisak, L., Nascimben, F., Allampallam, K., Dar, S., York, A., Gezer, S., Venugopal, P., et al. 2001. The clinical and biological effects of thalidomide in patients with myelodysplastic syndromes. Br J Haematol 115:881–894.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Li Zhou
    • 1
  • Amit Verma
    • 1
  1. 1.Albert Einstein College of MedicineBronxUSA

Personalised recommendations