Leukemic Stem Cells: New Therapeutic Targets?


An emerging concept in cancer biology is that a subset of cancer cells among the heterogeneous cell mass that constitutes the tumor may drive the growth of the tumor. This so-called cancer stem cell (CSC) shared some main features with normal stem cells. These include self-renewal, differentiation into the cell types of the original cancer and potent tumor formation. Despite the clear importance of CSCs in the genesis and perpetuation of cancers, little is currently known about the biological and molecular properties that make CSCs distinct from normal stem cells, the developmental/cellular origin of CSCs, the mechanisms responsible for their emergence in the course of the disease, and identification of candidate molecular targets for therapeutic intervention. This report will focus more specifically on the blood-related cancer leukemia, which was the first disease where human CSCs, or leukemic stem cells (LSCs), were isolated. In this chapter we will summarize our knowledge of LSCs notably in acute myeloid leukemia (AML) and will discuss different issues that are arising in trying to eradicate these cells.


Stem Cell Acute Myeloid Leukemia Cancer Stem Cell Acute Myeloid Leukemia Patient Stem Cell Niche 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, G. B., Chabner, K. T., Alley, I. R., Olson, D. P., Szczepiorkowski, Z. M., Poznansky, M. C., Kos, C. H., Pollak, M. R., Brown, E. M. & Scadden, D. T. (2006) Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor . Nature , 439 , 599–03.PubMedCrossRefGoogle Scholar
  2. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. (2003) Prospective identification of tumorigenic breast cancer cells . Proc Natl Acad Sci USA , 100 3983–3988.PubMedCrossRefGoogle Scholar
  3. Arai, F., Hirao, A., Ohmura, M., Sato, H., Matsuoka, S., Takubo, K., Ito, K., Koh, G. Y. – Suda, T. (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell, 118, 149–161.PubMedCrossRefGoogle Scholar
  4. Barabe, F., Kennedy, J. A., Hope, K. J. & Dick, J. E. (2007) Modeling the initiation and progression of human acute leukemia in mice . Science , 316, 600–604.PubMedCrossRefGoogle Scholar
  5. Bardet, V., Tamburini, J., Ifrah, N., et al. (2006) Single cell analysis of phosphoinositide 3-kinase/Akt and ERK activation in acute myeloid leukemia by flow cytometry . Haematologica , 91, 757–764.PubMedGoogle Scholar
  6. Bhatia, R., Holtz, M., Niu, N., et al. (2003) Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood, 101, 4701–4707.PubMedCrossRefGoogle Scholar
  7. Billottet, C., Grandage, V. L., Gale, R. E., et al. (2006) A selective inhibitor of the p110delta isoform of PI 3- kinase inhibits AML cell proliferation and survival and increases the cytotoxic effects of VP16. Oncogene, 25, 6648–6659.PubMedCrossRefGoogle Scholar
  8. Blair, A. & Sutherland, H. J. (2000) Primitive acute myeloid leukemia cells with long-term pro-liferative ability in vitro and in vivo lack surface expression of c-kit (CD117) . Exp Hematol , 28, 660–671.PubMedCrossRefGoogle Scholar
  9. Blair, A., Hogge, D. E., Ailles, L. E., Lansdorp, P. M. & Sutherland, H. J. (1997) Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood, 89 , 3104–3112.PubMedGoogle Scholar
  10. Blair, A., Hogge, D. E. & Sutherland, H. J. (1998) Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34(+)/CD71(−)/ HLA-DR. Blood, 92, 4325–4335.PubMedGoogle Scholar
  11. Blank, U., Karlsson, G., & Karlsson, S. (2008) Signaling pathways governing stem-cell fate. Blood, 111, 492–503.PubMedCrossRefGoogle Scholar
  12. Bonnet, D. & Dick, J. E. (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell . Nat Med , 3, 730–737.PubMedCrossRefGoogle Scholar
  13. Calvi, L. M., Adams, G. B., Weibrecht, K. W., Weber, J. M., Olson, D. P., Knight, M. C., Martin, R. P., Schipani, E., Divieti, P., Bringhurst, F. R., Milner, L. A., Kronenberg, H. M. & Scadden, D. T. (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 425, 841–846.PubMedCrossRefGoogle Scholar
  14. Clarke, M. F. & Fuller, M. (2006) Stem cells and cancer: two faces of eve. Cell, 124, 1111–1115.PubMedCrossRefGoogle Scholar
  15. Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J., & Maitland, N. J. (2005) Prospective isolation of tumorogenic prostate cancer stem cells . Cancer Res , 65, 10946–10951.PubMedCrossRefGoogle Scholar
  16. Copland, M., Hamilton, A., Elrick, L. J., et al. (2006) Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood, 107, 4532–4539.PubMedCrossRefGoogle Scholar
  17. Corral, J., Lavenir, I., Impey, H., Warren, A. J., Forster, A., Larson, T. A., Bell, S., Mckenzie, A. N., King, G. & Rabbitts, T. H. (1996) An Mll-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion onco-genes. Cell, 85 , 853–861.PubMedCrossRefGoogle Scholar
  18. Costello, R. T., Mallet, F., Gaugler, B., Sainty, D., Arnoulet, C., Gastaut, J. A. & Olive, D. (2000) Human acute myeloid leukemia CD34 +/CD38− progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Res, 60 , 4403–4411.PubMedGoogle Scholar
  19. Cozzio, A., Passegue, E., Ayton, P. M., Karsunky, H., Cleary, M. L. & Weissman, I. L. (2003) Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev, 17, 3029–3035.PubMedCrossRefGoogle Scholar
  20. Delaney, C. & Bernstein, I. D. (2004) Establishment of a pluripotent preleukaemic stem cell line by expression of the AML1-ETO fusion protein in Notch1-immortalized HSCN1cl10 cells . Br J Haematol , 125 , 353 – 357 .PubMedCrossRefGoogle Scholar
  21. Driessen, R. L., Johnston, H. M. & Nilsson, S. K. (2003) Membrane-bound stem cell factor is a key regulator in the initial lodgment of stem cells within the endosteal marrow region . Exp Hematol, 31, 1284–1291.PubMedCrossRefGoogle Scholar
  22. Gale, K. B., Ford, A. M., Repp, R., et al. (1997) Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots . Proc Natl Acad Sci USA , 94 13950–13954.PubMedCrossRefGoogle Scholar
  23. Grimwade, D., Walker, H., Oliver, F., Wheatley, K., Harrison, C., Harrison, G., Rees, J., Hann, I., Stevens, R., Burnett, A. & Goldstone, A. (1998) The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties . Blood , 92, 2322–2333.PubMedGoogle Scholar
  24. Grimwade, D., Walker, H., Harrison, G., Oliver, F., Chatters, S., Harrison, C. J., Wheatley, K., Burnett, A. K. & Goldstone, A. H. (2001) The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial . Blood , 98, 1312–1320.PubMedCrossRefGoogle Scholar
  25. Guzman, M. L., Rossi, R. M., Karnischky, L., et al. (2005) The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells . Blood , 105, 4163–4169.PubMedCrossRefGoogle Scholar
  26. Haylock, D. N. & Nilsson, S. K. (2005) Stem cell regulation by the hematopoietic stem cell niche. Cell Cycle, 4 , 1353–1355.PubMedGoogle Scholar
  27. Hope, K. J., Jin, L. & Dick, J. E. (2004) Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity . Nat Immunol , 5, 738–743.PubMedCrossRefGoogle Scholar
  28. Hong, D., Gupta, R., Ancliff, P., et al. (2008) Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia . Science , 319, 336–339.PubMedCrossRefGoogle Scholar
  29. Huang, X., Cho, S., & Spangrude, G. J. (2007) Hematopoietic stem cells: generation and self-renewal. Cell Death Differ, 14, 1851–1859.PubMedCrossRefGoogle Scholar
  30. Huntly, B. J., Shigematsu, H., Deguchi, K., et al. (2004) MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors . Cancer Cell, 6, 587–596.PubMedCrossRefGoogle Scholar
  31. Ishikawa, F., Yoshida, S., Saito, Y., et al. (2007) Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region . Nat Biotechnol , M25 1315–1321.CrossRefGoogle Scholar
  32. Jamieson, C. H., Ailles, L. E., Dylla, S. J., et al. (2004) Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML . N Engl J Med , 351, 657–667.PubMedCrossRefGoogle Scholar
  33. Jelinek, J., Oki, Y., Gharibyan, V., et al. (2005) JAK2 mutation 1849G > T is rare in acute leuke-mias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryo-cytic leukemia. Blood, 106, 3370–3373.PubMedCrossRefGoogle Scholar
  34. Jin, L., Hope, K. J., Zhai, Q., Smadja-Joffe, F., & Dick, J. E. (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells . Nat Med , 12 , 1167–1174.PubMedCrossRefGoogle Scholar
  35. Jordan, C. T., Upchurch, D., Szilvassy, S. J., Guzman, M. L., Howard, D. S., Pettigrew, A. L., Meyerrose, T., Rossi, R., Grimes, B., Rizzieri, D. A., Luger, S. M. & Phillips, G. L. (2000) The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia, 14, 1777–1784.PubMedCrossRefGoogle Scholar
  36. Kim-Rouille, M. H., MacGregor, A., Wiedemann, L. M., Greaves, M. F. & Navarrete, C. (1999) MLL-AF4 gene fusions in normal newborns. Blood, 93, 1107–1108.PubMedGoogle Scholar
  37. Lapidot, T. & Kollet, O. (2002) The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/ SCID and NOD/SCID/B2m(null) mice. Leukemia, 16, 1992–2003.PubMedCrossRefGoogle Scholar
  38. Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., Minden, M., Paterson, B., Caligiuri, M. A. & Dick, J. E. (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice . Nature , 367, 645–648.PubMedCrossRefGoogle Scholar
  39. Lessard, J. & Sauvageau, G. (2003) Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature, 423, 255–260.PubMedCrossRefGoogle Scholar
  40. Mikesch, J. H., Steffen, B., Berdel, W. E., Serve, H. & Muller-Tidow, C. (2007) The emerging role of Wnt signaling in the pathogenesis of acute myeloid leukemia . Leukemia , 21, 1638–1647.PubMedCrossRefGoogle Scholar
  41. Muller-Tidow, C., Steffen, B., Cauvet T, et al. (2004) Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol Cell Biol, 24, 2890–2904.PubMedCrossRefGoogle Scholar
  42. Nemeth, M. J. & Bodine, D. M. (2007) Regulation of hematopoiesis and the hematopoietic stem cell niche by Wnt signaling pathways . Cell Res , 17, 746–758.PubMedCrossRefGoogle Scholar
  43. Nilsson, S. K., Haylock, D. N., Johnston, H. M., Occhiodoro, T., Brown, T. J. & Simmons, P. J. (2003) Hyaluronan is synthesized by primitive hemopoietic cells, participates in their lodgment at the endosteum following transplantation, and is involved in the regulation of their proliferation and differentiation in vitro. Blood, 101, 856–862.PubMedCrossRefGoogle Scholar
  44. Nilsson, S. K., Johnston, H. M., Whitty, G. A., Williams, B., Webb, R. J., Denhardt, D. T., Bertoncello, I., Bendall, L. J., Simmons, P. J. &Haylock, D. N. (2005) Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood, 106, 1232–1239.PubMedCrossRefGoogle Scholar
  45. O'Brien, C.A., Pollett, A., Gallinger, S. & Dick, J. E. (2007) A human colon cancer capable of initiating tumor growth in ummunodeficient mice . Nature , 445, 106–110.PubMedCrossRefGoogle Scholar
  46. Park, I. K., Qian, D., Kiel, M., Becker, M. W., Pihalja, M., Weissman, I. L., Morrison, S. J. &Clarke, M. F. (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature, 423, 302–305.PubMedCrossRefGoogle Scholar
  47. Pearce, D. J., Taussig, D., Simpson, C., Allen, K., Rohatiner, A. Z., Lister, T. A. & Bonnet, D. (2005) Characterization of cells with a high aldehyde dehydrogenase activity from cord blood and acute myeloid leukemia samples . Stem Cells , 23, 752–760.PubMedCrossRefGoogle Scholar
  48. Pearce, D. J., Taussig, D., Zibara, K., Smith, L. L., Ridler, C. M., Preudhomme, C., Young, B. D., Rohatiner, A. Z., Lister, T. A. & Bonnet, D. (2006) AML engraftment in the NOD/SCID assay reflects the outcome of AML: implications for our understanding of the heterogeneity of AML. Blood, 107, 1166–1173.PubMedCrossRefGoogle Scholar
  49. Potocnik, A. J., Brakebusch, C. & Fassler, R. (2000) Fetal and adult hematopoietic stem cells require beta1 integrin function for colonizing fetal liver, spleen, and bone marrow . Immunity , 2 , 653–63.CrossRefGoogle Scholar
  50. Rabbitts, T. H., Appert, A., Chung, G., Collins, E. C., Drynan, L., Forster, A., Lobato, M. N., Mccormack, M. P., Pannell, R., Spandidos, A., Stocks, M. R., Tanaka, T. & Tse, E. (2001) Mouse models of human chromosomal translocations and approaches to cancer therapy . Blood Cells Mol Dis , 27, 249–59.PubMedCrossRefGoogle Scholar
  51. Rafii, S., Mohle, R., Shapiro, F., Frey, B. M. & Moore, M. A. (1997) Regulation of hematopoiesis by microvascular endothelium. Leuk Lymphoma, 7, 375–386.Google Scholar
  52. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. (2001) Stem cells, cancer, and cancer stem cells. Nature, 414, 105–111.PubMedCrossRefGoogle Scholar
  53. Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C. & De Maria, R. (2007) Identification and expansion of human colon-cancer-initiating cells. Nature, 445111–115.PubMedCrossRefGoogle Scholar
  54. Rombouts, W. J., Martens, A. C. & Ploemacher, R. E. (2000) Identification of variables determining the engraftment potential of human acute myeloid leukemia in the immunodeficient NOD/SCID human chimera model. Leukemia, 14, 889–897.PubMedCrossRefGoogle Scholar
  55. Schessl, C., Rawat, V. P., Cusan, M., Deshpande, A., Kohl, T. M., Rosten, P. M., Spiekermann, K., Humphries, R. K., Schnittger, S., Kern, W., Hiddemann, W., Quintanilla-Martinez, L., Bohlander, S. K., Feuring-Buske, M. & Buske, C. (2005) The AML1-ETO fusion gene and theFLT3 length mutation collaborate in inducing acute leukemia in mice . J Clin Invest , 1152159–2168.PubMedCrossRefGoogle Scholar
  56. Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., Henkelman, R. M., Cusimano, M. D. & Dirks, P. B. (2004) Identification of human brain tumour initiating cells. Nature, 432, 396–401.PubMedCrossRefGoogle Scholar
  57. So, C. W., Karsunky, H., Passegue, E., Cozzio, A., Weissman, I. L. & Cleary, M. L. (2003) MLL-GAS7 transforms multipotent hematopoietic progenitors and induces mixed lineage leukemias in mice . Cancer Cell, 3, 161–171.PubMedCrossRefGoogle Scholar
  58. Spoo, A. C., Lubbert, M., Wierda, W. G. & Burger, J. A. (2007) CXCR4 is a prognostic marker in acute myelogenous leukemia. Blood, 109, 786–791.PubMedCrossRefGoogle Scholar
  59. Stier, S., Ko, Y., Forkert, R., Lutz, C., Neuhaus, T., Grunewald, E., Cheng, T., Dombkowski, D., Calvi , L. M. , Rittling , S. R. &; Scadden , D. T. (2005) Osteopontin is a hematopoietic stem cellniche component that negatively regulates stem cell pool size . J Exp Med , 201, 1781–1791.PubMedCrossRefGoogle Scholar
  60. Suzuki, N., Ohneda, O., Minegishi, N., Nishikawa, M., Ohta, T., Takahashi, S., Engel, J. D. & Yamamoto, M. (2006) Combinatorial Gata2 and Sca1 expression defines hematopoietic stem cells in the bone marrow niche . Proc Natl Acad Sci USA , 103, 2202–2207.PubMedCrossRefGoogle Scholar
  61. Tamburini, J., Elie, C., Bardet, V., et al. (2007) Constitutive phosphoinositide-3kinase/AKT activation represents a favourable prognostic factor in de novo AML patients . Blood , 110, 1025–1028.PubMedCrossRefGoogle Scholar
  62. Taussig, D. C., Pearce, D. J., Simpson, C., Rohatiner, A. Z., Lister, T. A., Kelly, G., Luongo, J. L., Danet-Desnoyers, G. A. & Bonnet, D. (2005) Hematopoietic stem cells express multiple myeloid markers: implications for the origin and targeted therapy of acute myeloid leukemia . Blood, 106, 4086–4092.PubMedCrossRefGoogle Scholar
  63. Taussig, D. C., Miraki-Moud, F., Anjos-Afonso, F., Pearce D.J., et al. (2008). Anti-CD38 antibody mediated clearancee of human repopulating cells masks the heterogeneity of leukemia initiating cells. Blood, In Press.Google Scholar
  64. Verfaillie, C. M. (1998)Adhesion receptors as regulators of the hematopoietic process. Blood, 922609–2612.PubMedGoogle Scholar
  65. Wiemels, J. L., Ford, A. M., Van Wering, E. R., Postma, A., & Greaves, M. (1999) Protracted and variable latency of acute lymphoblastic leukemia after TEL-AML1 gene fusion in utero . Blood 94, 1057–1062.PubMedGoogle Scholar
  66. Wiemels, J. L., Xiao, Z., Buffler P. A., et al. (2002) In utero origin of t(8;21) AML1-ETO trans-locations in childhood acute myeloid leukemia . Blood 99 , 3801–3805.PubMedCrossRefGoogle Scholar
  67. Yalcintepe, L., Frankel, A. E., & Hogge, D. E. (2006) Expression of interleukin-3 receptor subu-nits on defined subpopulations of acute myeloid leukemia blasts predicts the cytotoxicity of diphtheria toxin interleukin-3 fusion protein against malignant progenitors that engraft in immunodeficient mice. Blood. 108, 3530–3537.PubMedCrossRefGoogle Scholar
  68. Zhao, C., Blum, J., Chen, A., et al. (2007) Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo . Cancer Cell 12 , 528–541.PubMedCrossRefGoogle Scholar
  69. Zhou, S., Schuetz, J. D., Bunting, K. D., Colapietro, A. M., Sampath, J., Morris, J. J., Lagutina, I., Grosveld, G. C., Osawa, M., Nakauchi, H. & Sorrentino, B. P. (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med, 7, 1028–1034.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Haematopoietic Stem Cell Laboratory, Cancer Research UKLondon Research InstituteLondon

Personalised recommendations