Tropomyosin pp 273-282 | Cite as

Tropomyosins as Discriminators of Myosin Function

  • E. Michael Ostap
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 644)


Vertebrate nonmuscle cells express multiple tropomyosin isoforms that are sorted to subcellular compartments that have distinct morphological and dynamic properties. The creation of these compartments has a role in controlling cell morphology, cell migration and polarization of cellular components. There is increasing evidence that nonmuscle myosins are regulated by tropomyosin in these compartments via the regulation of actin attachment, ATPase kinetics, or by stabilization of cytoskeletal tracks for myosin-based transport. In this chapter, I review the literature describing the regulation of various myosins by tropomyosins and consider the mechanisms for this regulation.


Duty Ratio Motility Assay Curr Opin Cell Biol Tail Domain Actin Cable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gunning PW, Schevzov G, Kee AJ et al. Tropomyosin isoforms: divining rods for actin cytoskeleton function. Trends Cell Biol 2005; 15(6):333–41.PubMedCrossRefGoogle Scholar
  2. 2.
    Greaser ML, Gergely J. Reconstitution of troponin activity from three protein components. J Biol Chem 1971; 246(13):4226–33.PubMedGoogle Scholar
  3. 3.
    Pittenger MF, Kazzaz JA, Helfman DM. Functional properties of nonmuscle tropomyosin isoforms. Curr Opin Cell Biol 1994; 6(1):96–104.PubMedCrossRefGoogle Scholar
  4. 4.
    Gunning P, Hardeman E, Jeffrey P, et al. Creating intracellular structural domains: spatial segregation of actin and tropomyosin isoforms in neurons. Bioessays 1998; 20(11):892–900.PubMedCrossRefGoogle Scholar
  5. 5.
    Lin JJ, Hegmann TE, Lin JL. Differential localization of tropomyosin isoforms in cultured nonmuscle cells. J Cell Biol 1988; 107(2):563–72.PubMedCrossRefGoogle Scholar
  6. 6.
    Schevzov G, Gunning P, Jeffrey PL, et al. Tropomyosin localization reveals distinct populations of microfilaments in neurites and growth cones. Mol Cell Neurosci 1997; 8(6):439–54.PubMedCrossRefGoogle Scholar
  7. 7.
    Schevzov G, Bryce NS, Almonte-Baldonado R, et al. Specific features of neuronal size and shape are regulated by tropomyosin isoforms. Mol Biol Cell 2005; 16(7):3425–37.PubMedCrossRefGoogle Scholar
  8. 8.
    DesMarais V, Ichetovkin I, Condeelis J et al. Spatial regulation of actin dynamics: a tropomyosin-free, actin-rich compartment at the leading edge. J Cell Sci 2002; 115(Pt 23):4649–60.PubMedCrossRefGoogle Scholar
  9. 9.
    Cooper JA. Actin dynamics: tropomyosin provides stability. Curr Biol 2002; 12(15):R523–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Berg JS, Powell BC, Cheney RE. A millennial myosin census. Mol Biol Cell 2001; 12(4):780–94.PubMedGoogle Scholar
  11. 11.
    Foth BJ, Goedecke MC, Soldati D. New insights into myosin evolution and classification. Proc Natl Acad Sci USA 2006; 103(10):3681–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Hasson T, Gillespie PG, Garcia JA et al. Unconventional myosins in inner-ear sensory epithelia. J Cell Biol 1997; 137(6):1287–307.PubMedCrossRefGoogle Scholar
  13. 13.
    Heintzelman MB, Hasson T, Mooseker MS. Multiple unconventional myosin domains of the intestinal brush border cytoskeleton. J Cell Sci 1994; 107(Pt 12):3535–43.PubMedGoogle Scholar
  14. 14.
    Krendel M, Mooseker MS. Myosins: Tails (and Heads) of Functional Diversity. Physiology (Bethesda) 2005; 20(4):239–51.Google Scholar
  15. 15.
    De La Cruz EM, Ostap EM. Relating biochemistry and function in the myosin superfamily. Curr Opin Cell Biol 2004; 16(1):61–7.CrossRefGoogle Scholar
  16. 16.
    Golomb E, Ma X, Jana SS, Preston YA et al. Identification and characterization of nonmuscle myosin II-C, a new member of the myosin II family. J Biol Chem 2004; 279(4):2800–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Kovacs M et al. Functional divergence of human cytoplasmic myosin II: kinetic characterization of the nonmuscle IIA isoform. J Biol Chem 2003; 278(40):38132–40.PubMedCrossRefGoogle Scholar
  18. 18.
    McKillop DF, Geeves MA. Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys J 1993; 65(2):693–701.PubMedCrossRefGoogle Scholar
  19. 19.
    Maytum R, Lehrer SS, Geeves MA. Cooperativity and switching within the three-state model of muscle regulation. Biochemistry 1999; 38(3):1102–10.PubMedCrossRefGoogle Scholar
  20. 20.
    Lehman W, Hatch V, Korman V et al. Tropomyosin and actin isoforms modulate the localization of tropomyosin strands on actin filaments. J Mol Biol 2000; 302(3):593–606.PubMedCrossRefGoogle Scholar
  21. 21.
    Maytum R, Geeves MA, Konrad M. Actomyosin regulatory properties of yeast tropomyosin are dependent upon N-terminal modification. Biochemistry 2000; 39(39):11913–20.PubMedCrossRefGoogle Scholar
  22. 22.
    De La Cruz EM, Wells AL, Rosenfeld SS et al. The kinetic mechanism of myosin V. Proc Natl Acad Sci USA 1999; 96(24):13726–31.CrossRefGoogle Scholar
  23. 23.
    Lewis JH, Lin T, Hokanson DE et al. Temperature dependence of nucleotide association and kinetic characterization of myolb. Biochemistry 2006; 45(38):11589–97.PubMedCrossRefGoogle Scholar
  24. 24.
    Tobacman LS, Butters CA. A new model of cooperative myosin-thin filament binding. J Biol Chem 2000; 275(36):27587–93.PubMedGoogle Scholar
  25. 25.
    Sokac AM, Schietroma C, Gundersen CB et al. Myosin-1c couples assembling actin to membranes to drive compensatory endocytosis. Dev Cell 2006; 11(5):629–40.PubMedCrossRefGoogle Scholar
  26. 26.
    Bose A, Robida S, Furcinitti PS et al. Unconventional myosin Myo 1c promotes membrane fusion in a regulated exocytic pathway. Mol Cell Biol 2004;24(12):5447–58.PubMedCrossRefGoogle Scholar
  27. 27.
    Tyska MJ, Mackey AT, Huang JD et al. Myosin-1a is critical for normal brush border structure and composition. Mol Biol Cell 2005; 16(5):2443–57.PubMedCrossRefGoogle Scholar
  28. 28.
    Holt JR, Gillespie SK, Provance DW et al. A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells. Cell 2002; 108(3):371–81.PubMedCrossRefGoogle Scholar
  29. 29.
    El Mezgueldi M, Tang N, Rosenfeld SS et al. The kinetic mechanism of Myole (human myosin-IC). J Biol Chem 2002; 277(24):21514–21.PubMedCrossRefGoogle Scholar
  30. 30.
    Jontes JD, Milligan RA, Pollard TD et al. Kinetic characterization of brush border myosin-I ATPase. Proc Natl Acad Sci USA 1997; 94(26):14332–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Ruppert C, Godel J, Müller RT et al. Localization of the rat myosin I molecules myr 1 and myr 2 and in vivo targeting of their tail domains. J Cell Sci 1995; 108(Pt 12):3775–86.PubMedGoogle Scholar
  32. 32.
    Tang N, Ostap EM. Motor domain-dependent localization of myo 1b (myr-1). Curr Biol 2001; 11(14):1131–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Collins K, Matsudaira P. Differential regulation of vertebrate myosins I and II. J Cell Sci Suppl 1991; 14:11–6.PubMedGoogle Scholar
  34. 34.
    Fanning AS, Wolenski JS, Mooseker MS et al. Differential regulation of skeletal muscle myosin-II and brush border myosin-I enzymology and mechanochemistry by bacterially produced tropomyosin isoforms. Cell Motil Cytoskeleton 1994; 29(1):29–45.PubMedCrossRefGoogle Scholar
  35. 35.
    Pelham RJ Jr, Lin JJ, Wang YL. A high molecular mass nonmuscle tropomyosin isoform stimulates retrograde organelle transport. J Cell Sci 1996; 109(Pt 5):981–9.PubMedGoogle Scholar
  36. 36.
    Kollmar M, Dürrwang U, Kliche W et al. Crystal structure of the motor domain of a class-I myosin. EMBO J 2002; 21(11):2517–25.PubMedCrossRefGoogle Scholar
  37. 37.
    Lieto-Trivedi A, Dash S, Coluccio LM. Myosin surface loop 4 modulates inhibition of actomyosin 1b ATPase activity by tropomyosin. Biochemistry 2007; 46(10):2779–86.PubMedCrossRefGoogle Scholar
  38. 38.
    Bresnick AR. Molecular mechanisms of nonmuscle myosin-II regulation. Curr Opin Cell Biol 1999; 11(1):26–33.PubMedCrossRefGoogle Scholar
  39. 39.
    Chacko S. Effects of phosphorylation, calcium ion and tropomyosin on actin-activated adenosine 5′-triphosphatase activity of mammalian smooth muscle myosin. Biochemistry 1981; 20(4):702–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Umemoto S, Bengur AR, Sellers JR. Effect of multiple phosphorylations of smooth muscle and cytoplasmic myosins on movement in an in vitro motility assay. J Biol Chem 1989; 264(3):1431–6.PubMedGoogle Scholar
  41. 41.
    Pato MD, Sellers JR, Preston YA et al. Baculovirus expression of chicken nonmuscle heavy meromyosin II-B. Characterization of alternatively spliced isoforms. J Biol Chem 1996; 271(5):2689–95.PubMedCrossRefGoogle Scholar
  42. 42.
    Strand J, Nili M, Homsher E et al. Modulation of myosin function by isoform-specific properties of Saccharomyces cerevisiae and muscle tropomyosins. J Biol Chem 2001; 276(37):34832–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Huckaba TM, Lipkin T, Pon LA. Roles of type II myosin and a tropomyosin isoform in retrograde actin flow in budding yeast. J Cell Biol 2006; 175(6):957–69.PubMedCrossRefGoogle Scholar
  44. 44.
    Siemankowski RF, Wiseman MO, White HD. ADP dissociation from actomyosin subfragment 1 is sufficiently slow to limit the unloaded shortening velocity in vertebrate muscle. Proc Natl Acad Sci USA 1985; 82(3):658–62.PubMedCrossRefGoogle Scholar
  45. 45.
    Warshaw DM et al. Smooth muscle myosin cross-bridge interactions modulate actin filament sliding velocity in vitro. J Cell Biol 1990; 111(2):453–63.PubMedCrossRefGoogle Scholar
  46. 46.
    Bryce NS, Schevzov G, Ferguson V et al. Specification of actin filament function and molecular composition by tropomyosin isoforms. Mol Biol Cell 2003; 14(3):1002–16.PubMedCrossRefGoogle Scholar
  47. 47.
    Gupton SL, Anderson KL, Kole TP et al. Cell migration without a lamellipodium: translation of actin dynamics into cell movement mediated by tropomyosin. J Cell Biol 2005; 168(4):619–31.PubMedCrossRefGoogle Scholar
  48. 48.
    Langford GM. Myosin-V, a versatile motor for short-range vesicle transport. Traffic 2002; 3(12):859–65.PubMedCrossRefGoogle Scholar
  49. 49.
    Sellers JR, Veigel C. Walking with Myosin v. Curr Opin Cell Biol 2006; 18(1):68–73.PubMedCrossRefGoogle Scholar
  50. 50.
    Wolenski JS, Cheney RE, Mooseker MS et al. In vitro motility of immunoadsorbed brain myosin-V using a Limulus acrosomal process and optical tweezer-based assay. J Cell Sci 1995; 108(Pt 4):1489–96.PubMedGoogle Scholar
  51. 51.
    Pruyne DW, Schott DH, Bretscher A. Tropomyosin-containing actin cables direct the Myo2p-dependent polarized delivery of secretory vesicles in budding yeast. J Cell Biol 1998; 143(7):1931–45.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • E. Michael Ostap
    • 1
  1. 1.Department of PhysiologyUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations