Structure and Evolution of Tropomyosin Genes

  • Bernadette Vrhovski
  • Nadine Thézé
  • Pierre Thiébaud
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 644)


Tropomyosins constitute a family of highly related actin-binding proteins found in the animal kingdom from yeast to human. In vertebrates, they are encoded by a multigene family where each member can produce several isoforms through alternative splicing and for some of them with alternate promoters. Tropomyosin isoform diversity has considerably increased during evolution from invertebrates to vertebrates and stems from the duplication of ancestral genes. The advance of genomic sequence information on various animals has expanded our knowledge on the structure of tropomyosin genes in different phyla and subphyla. We present the organisation of tropomyosin genes in different major phyla and the phylogenetic comparison of their structure highlights the evolution of this multigene family.


Xenopus Laevis Genome Duplication Fugu Rubripes Vertebrate Orthologs Tropomyosin Isoforms 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pittenger MF, Kazzaz JA, Helfman DM. Functional properties of nonmuscle tropomyosin isoforms. Curr Opin Cell Biol 1994; 6(1):96–104.PubMedCrossRefGoogle Scholar
  2. 2.
    Gunning PW, Schevzov G, Kee AJ et al. Tropomyosin isoforms: divining rods for actin cytoskeleton function. Trends Cell Biol 2005; 15(6):333–341.PubMedCrossRefGoogle Scholar
  3. 3.
    Lees-Miller JP, Helfman DM. The molecular basis for tropomyosin isoform diversity. Bioessays 1991; 13(9):429–437.PubMedCrossRefGoogle Scholar
  4. 4.
    Vrhovski B, Schevzov G, Dingle S et al. Tropomyosin isoforms from the gamma gene differing at the C-terminus are spatially and developmentally regulated in the brain. J Neurosci Res 2003; 72(3):373–383.PubMedCrossRefGoogle Scholar
  5. 5.
    Liu HP, Bretscher A. Disruption of the single tropomyosin gene in yeast results in the disappearance of actin cables from the cytoskeleton. Cell 1989; 57(2):233–242.PubMedCrossRefGoogle Scholar
  6. 6.
    Drees B, Brown C, Barrell BG et al. Tropomyosin is essential in yeast, yet the TPM1 and TPM2 products perform distinct functions. J Cell Biol 1995; 128(3):383–392.PubMedCrossRefGoogle Scholar
  7. 7.
    Balasubramanian MK, Helfman DM, Hemmingsen SM. A new tropomyosin essential for cytokinesis in the fission yeast S. pombe. Nature 1992; 360(6399):84–87.PubMedCrossRefGoogle Scholar
  8. 8.
    Hedges SB. The origin and evolution of model organisms. Nat Rev Genet 2002; 3(11):838–849.PubMedCrossRefGoogle Scholar
  9. 9.
    Lopez de Haro MS, Salgado LM, David CN et al. Hydra tropomyosin TROP1 is expressed in head-specific epithelial cells and is a major component of the cytoskeletal structure that anchors nematocytes. J Cell Sci 1994; 107(Pt 6):1403–1411.PubMedGoogle Scholar
  10. 10.
    Groger H, Callaerts P, Gehring WJ et al. Gene duplication and recruitment of a specific tropomyosin into striated muscle cells in the jellyfish Podocoryne carnea. J Exp Zool 1999; 285(4):378–386.PubMedCrossRefGoogle Scholar
  11. 11.
    Adoutte A, Balavoine G, Lartillot N et al. The new animal phylogeny: reliability and implications. Proc Natl Acad Sci USA 2000; 97(9):4453–4456.PubMedCrossRefGoogle Scholar
  12. 12.
    Frenkel MJ, Savin KW, Bakker RE et al. Characterization of cDNA clones coding for muscle tropomyosin of the nematode Trichostrongylus colubriformis. Mol Biochem Parasitol 1989; 37(2):191–199.PubMedCrossRefGoogle Scholar
  13. 13.
    Nakada T, Nagano I, Wu Z et al. Molecular cloning and expression of the full-length tropomyosin gene from Trichinella spiralis. J Helminthol 2003; 77(1):57–63.PubMedCrossRefGoogle Scholar
  14. 14.
    Jenkins RE, Taylor MJ, Gilvary NJ et al. Tropomyosin implicated in host protective responses to microfilariae in onchocerciasis. Proc Natl Acad Sci USA 1998; 95(13):7550–7555.PubMedCrossRefGoogle Scholar
  15. 15.
    Anyanful A, Sakube Y, Takuwa K et al. The third and fourth tropomyosin isoforms of Caenorhabditis elegans are expressed in the pharynx and intestines and are essential for development and morphology. J Mol Biol 2001; 313(3):525–537.PubMedCrossRefGoogle Scholar
  16. 16.
    Kagawa H, Sugimoto K, Matsumoto H et al. Genome structure, mapping and expression of the tropomyosin gene tmy-1 of Caenorhabditis elegans. J Mol Biol 1995; 251(5):603–613.PubMedCrossRefGoogle Scholar
  17. 17.
    Karlik CC, Fyrberg EA. Two Drosophila melanogaster tropomyosin genes: structural and functional aspects. Mol Cell Biol 1986; 6(6):1965–1973.PubMedGoogle Scholar
  18. 18.
    Basi GS, Boardman M, Storti RV. Alternative splicing of a Drosophila tropomyosin gene generates muscle tropomyosin isoforms with different carboxy-terminal ends. Mol Cell Biol 1984; 4(12):2828–2836.PubMedGoogle Scholar
  19. 19.
    Basi GS, Storti RV. Structure and DNA sequence of the tropomyosin I gene from Drosophila melanogaster. J Biol Chem 1986; 261(2):817–827.PubMedGoogle Scholar
  20. 20.
    Hanke PD, Lepinske HM, Storti RV. Characterization of a Drosophila cDNA clone that encodes a 252-amino acid nonmuscle tropomyosin isoform. J Biol Chem 1987; 262(36):17370–17373.PubMedGoogle Scholar
  21. 21.
    Hanke PD, Storti RV. Nucleotide sequence of a cDNA clone encoding a Drosophila muscle tropomyosin II isoform. Gene 1986; 45(2):211–214.PubMedCrossRefGoogle Scholar
  22. 22.
    Hanke PD, Storti RV. The Drosophila melanogaster tropomyosin II gene produces multiple proteins by use of alternative tissue-specific promoters and alternative splicing. Mol Cell Biol 1988; 8(9):3591–3602.PubMedGoogle Scholar
  23. 23.
    Sodergren E, Weinstock GM, Davidson EH et al. The genome of the sea urchin Strongylocentrotus purpuratus. Science 10 2006; 314(5801):941–952.Google Scholar
  24. 24.
    Corbo JC, Di Gregorio A, Levine M. The ascidian as a model organism in developmental and evolutionary biology. Cell 2001; 106(5):535–538.PubMedCrossRefGoogle Scholar
  25. 25.
    Meedel TH, Hastings KE. Striated muscle-type tropomyosin in a chordate smooth muscle, ascidian body-wall muscle. J Biol Chem 1993; 268(9):6755–6764.PubMedGoogle Scholar
  26. 26.
    Perry SV. Vertebrate tropomyosin: distribution, properties and function. J Muscle Res Cell Motil 2001; 22(1):5–49.PubMedCrossRefGoogle Scholar
  27. 27.
    Ikeda D, Toramoto T, Ochiai Y et al. Identification of novel tropomyosin 1 genes of pufferfish (Fugu rubripes) on genomic sequences and tissue distribution of their transcripts. Mol Biol Rep 2003; 30(2):83–90.PubMedCrossRefGoogle Scholar
  28. 28.
    Toramoto T, Ikeda D, Ochiai Y et al. Multiple gene organization of pufferfish Fugu rubripes tropomyosin isoforms and tissue distribution of their transcripts. Gene 2004; 331:41–51.PubMedCrossRefGoogle Scholar
  29. 29.
    Graf JD, Kobel HR. Genetics of Xenopus laevis. Methods Cell Biol 1991; 36:19–34.PubMedCrossRefGoogle Scholar
  30. 30.
    Gaillard C, Theze N, Lerivray H et al. A novel tropomyosin isoform encoded by the Xenopus laevis alpha-TM gene is expressed in the brain. Gene 1998; 207(2):235–239.PubMedCrossRefGoogle Scholar
  31. 31.
    Gaillard C, Theze N, Hardy S et al. Alpha-tropomyosin gene expression in Xenopus laevis: differential promoter usage during development and controlled expression by myogenic factors. Dev Genes Evol 1998; 207(7):435–445.PubMedCrossRefGoogle Scholar
  32. 32.
    Hardy S, Fiszman MY, Osborne HB et al. Characterization of muscle and non muscle Xenopus laevis tropomyosin mRNAs transcribed from the same gene. Developmental and tissue-specific expression. Eur J Biochem 1991; 202(2):431–440.PubMedCrossRefGoogle Scholar
  33. 33.
    Hardy S, Thiebaud P. Isolation and characterization of cDNA clones encoding the skeletal and smooth muscle Xenopus laevis beta tropomyosin isoforms. Biochim Biophys Acta 1992; 1131(2):239–242.PubMedGoogle Scholar
  34. 34.
    Gaillard C, Lerivray H, Theze N et al. Differential expression of two skeletal muscle beta-tropomyosin mRNAs during Xenopus laevis development. Int J Dev Biol 1999; 43(2):175–178.PubMedGoogle Scholar
  35. 35.
    Hardy S, Theze N, Lepetit D et al. The Xenopus laevis TM-4 gene encodes nonmuscle and cardiac tropomyosin isoforms through alternative splicing. Gene 1995; 156(2):265–270.PubMedCrossRefGoogle Scholar
  36. 36.
    Lemonnier M, Balvay L, Mouly V et al. The chicken gene encoding the alpha isoform of tropomyosin of fast-twitch muscle fibers: organization, expression and identification of the major proteins synthesized. Gene 1991; 107(2):229–240.PubMedCrossRefGoogle Scholar
  37. 37.
    Lindquester GJ, Flach JE, Fleenor DE et al. Avian tropomyosin gene expression. Nucleic Acids Res 1989; 17(5):2099–2118.PubMedCrossRefGoogle Scholar
  38. 38.
    Forry-Schaudies S, Maihle NJ, Hughes SH. Generation of skeletal, smooth and low molecular weight nonmuscle tropomyosin isoforms from the chicken tropomyosin 1 gene. J Mol Biol 1990; 211(2):321–330.PubMedCrossRefGoogle Scholar
  39. 39.
    Libri D, Lemonnier M, Meinnel T et al. A single gene codes for the beta subunits of smooth and skeletal muscle tropomyosin in the chicken. J Biol Chem 1989; 264(5):2935–2944.PubMedGoogle Scholar
  40. 40.
    Libri D, Mouly V, Lemonnier M et al. A nonmuscle tropomyosin is encoded by the smooth/skeletal beta-tropomyosin gene and its RNA is transcribed from an internal promoter. J Biol Chem 1990; 265(6):3471–3473.PubMedGoogle Scholar
  41. 41.
    Fleenor DE, Hickman KH, Lindquester GJ et al. Avian cardiac tropomyosin gene produces tissue-specific isoforms through alternative RNA splicing. J Muscle Res Cell Motil 1992; 13(1):55–63.PubMedCrossRefGoogle Scholar
  42. 42.
    Zajdel RW, Denz CR, Lee S et al. Identification, characterization and expression of a novel alpha-tropomyosin isoform in cardiac tissues in developing chicken. J Cell Biochem 2003; 89(3):427–439.PubMedCrossRefGoogle Scholar
  43. 43.
    Ruiz-Opazo N, Nadal-Ginard B. Alpha-tropomyosin gene organization. Alternative splicing of duplicated isotype-specific exons accounts for the production of smooth and striated muscle isoforms. J Biol Chem 1987; 262(10):4755–4765.PubMedGoogle Scholar
  44. 44.
    Wieczorek DF, Smith CW, Nadal-Ginard B. The rat alpha-tropomyosin gene generates a minimum of six different mRNAs coding for striated, smooth and nonmuscle isoforms by alternative splicing. Mol Cell Biol 1988; 8(2):679–694.PubMedGoogle Scholar
  45. 45.
    Lees-Miller JP, Goodwin LO, Helfman DM. Three novel brain tropomyosin isoforms are expressed from the rat alpha-tropomyosin gene through the use of alternative promoters and alternative RNA processing. Mol Cell Biol 1990; 10(4):1729–1742.PubMedGoogle Scholar
  46. 46.
    Goodwin LO, Lees-Miller JP, Leonard MA et al. Four fibroblast tropomyosin isoforms are expressed from the rat alpha-tropomyosin gene via alternative RNA splicing and the use of two promoters. J Biol Chem 1991; 266(13):8408–8415.PubMedGoogle Scholar
  47. 47.
    Ruiz-Opazo N, Weinberger J, Nadal-Ginard B. Comparison of alpha-tropomyosin sequences from smooth and striated muscle. Nature 1985; 315(6014):67–70.PubMedCrossRefGoogle Scholar
  48. 48.
    Helfman DM, Cheley S, Kuismanen E et al. Nonmuscle and muscle tropomyosin isoforms are expressed from a single gene by alternative RNA splicing and polyadenylation. Mol Cell Biol 1986; 6(11):3582–3595.PubMedGoogle Scholar
  49. 49.
    MacLeod AR, Houlker C, Reinach FC et al. A muscle-type tropomyosin in human fibroblasts: evidence for expression by an alternative RNA splicing mechanism. Proc Natl Acad Sci USA 1985; 82(23):7835–7839.PubMedCrossRefGoogle Scholar
  50. 50.
    Clayton L, Reinach FC, Chumbley GM et al. Organization of the hTMnm gene. Implications for the evolution of muscle and nonmuscle tropomyosins. J Mol Biol 1988; 201(3):507–515.PubMedCrossRefGoogle Scholar
  51. 51.
    Dufour C, Weinberger RP, Schevzov G et al. Splicing of two internal and four carboxyl-terminal alternative exons in nonmuscle tropomyosin 5 prem RNA is independently regulated during development. J Biol Chem 1998; 273(29):18547–18555.PubMedCrossRefGoogle Scholar
  52. 52.
    Lees-Miller JP, Yan A, Helfman DM. Structure and complete nucleotide sequence of the gene encoding rat fibroblast tropomyosin 4. J Mol Biol 1990; 213(3):399–405.PubMedCrossRefGoogle Scholar
  53. 53.
    Holland PW. Gene duplication: past, present and future. Semin Cell Dev Biol 1999; 10(5):541–547.PubMedCrossRefGoogle Scholar
  54. 54.
    Panopoulou G, Hennig S, Groth D et al. New evidence for genome-wide duplications at the origin of vertebrates using an amphioxus gene set and completed animal genomes. Genome Res 2003; 13(6A):1056–1066.PubMedCrossRefGoogle Scholar
  55. 55.
    Spring J. Vertebrate evolution by interspecific hybridisation—are we polyploid? FEBS Lett 1997; 400(1):2–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Escriva H, Manzon L, Youson J et al. Analysis of lamprey and hagfish genes reveals a complex history of gene duplications during early vertebrate evolution. Mol Biol Evol 2002; 19(9):1440–1450.PubMedGoogle Scholar
  57. 57.
    Jaillon O, Aury JM, Brunet F et al. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 2004; 431(7011):946–957.PubMedCrossRefGoogle Scholar
  58. 58.
    Aparicio S, Chapman J, Stupka E et al. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 2002; 297(5585):1301–1310.PubMedCrossRefGoogle Scholar
  59. 59.
    Hellsten U, Khokha MK, Grammer TC et al. Accelerated gene evolution and subfunctionalization in the pseudotetraploid frog Xenopus laevis. BMC Biol 2007; 5:31.PubMedCrossRefGoogle Scholar
  60. 60.
    Dehal P, Boore JL. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 2005; 3(10):e314.PubMedCrossRefGoogle Scholar
  61. 61.
    Rogozin IB, Wolf YI, Sorokin AV et al. Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr Biol 2003; 13(17):1512–1517.PubMedCrossRefGoogle Scholar
  62. 62.
    Malko DB, Makeev VJ, Mironov AA et al. Evolution of exon-intron structure and alternative splicing in fruit flies and malarial mosquito genomes. Genome Res 2006; 16(4):505–509.PubMedCrossRefGoogle Scholar
  63. 63.
    Kusakabe T, Araki I, Satoh N et al. Evolution of chordate actin genes: evidence from genomic organization and amino acid sequences. J Mol Evol 1997; 44(3):289–298.PubMedCrossRefGoogle Scholar
  64. 64.
    Smillie LB. Structure and functions of tropomyosins from muscle and nonmuscle sources. Trends Biochem Sci 1979; 4:151–155.CrossRefGoogle Scholar
  65. 65.
    Kondrashov FA, Koonin EV. Origin of alternative splicing by tandem exon duplication. Hum Mol Genet 2001; 10(23):2661–2669.PubMedCrossRefGoogle Scholar
  66. 66.
    Stoltzfus A, Logsdon JM Jr et al. Intron “sliding” and the diversity of intron positions. Proc Natl Acad Sci USA 1997; 94(20):10739–10744.PubMedCrossRefGoogle Scholar
  67. 67.
    Xing Y, Lee C. Alternative splicing and RNA selection pressure—evolutionary consequences for eukaryotic genomes. Nat Rev Genet 2006; 7(7):499–509.PubMedCrossRefGoogle Scholar
  68. 68.
    Pasquet S, Naye F, Faucheux C et al. Transcription enhancer factor-1-dependent expression of the alpha-tropomyosin gene in the three muscle cell types. J Biol Chem 2006; 281(45):34406–34420.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Bernadette Vrhovski
    • 1
  • Nadine Thézé
    • 2
  • Pierre Thiébaud
    • 3
  1. 1.Oncology Research UnitThe Children’s Hospital at WestmeadWestmeadAustralia
  2. 2.Université Victor Segalen BordeauxBordeauxFrance
  3. 3.UMR 5164-CNRSUniversité Victor Segalen Bordeaux 2Bordeaux CedexFrance

Personalised recommendations