Sapphire pp 447-468 | Cite as

Methods for Obtaining Complex Monolithic Sapphire Units and Large-Size Crystals

  • Elena R. Dobrovinskaya
  • Leonid A. Lytvynov
  • Valerian Pishchik
Part of the Micro- and Opto-Electronic Materials, Structures, and Systems book series (MOEM)


The present-day state of crystal growth technologies makes it possible to obtain sapphire products of rather large size and complex configuration. However, demand has arisen for super-large sapphire crystals and complex single-piece units, which cannot be grown in practice but must be assembled from separate components. In addition, sapphire-metallic and sapphire-ceramic joints are demanded, the main requirements for which include vacuum, electrical, and mechanical strength, high transparency, wear resistance, chemical stability, and so forth.

Naturally, the opportunity to increase the size of grown crystals is limited. In the next few years, there clearly will be a rise of some 10–15%. However, the growth of these crystals may turn out to be economically inexpedient. So, a search has begun for new technologies yielding large-size crystals and units based on the fabrication of single-piece joints.


Solder Joint Welding Seam Joint Strength Crystallization Front Secondary Recrystallization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Pat. USA 3390019, MKJ B23K 15/00Google Scholar
  2. 2.
    Pat. USA 3518400, MKJ B23K 15/00Google Scholar
  3. 3.
    Pat. USA 4263495, MKJ B23K 27/00Google Scholar
  4. 4.
    Kapelyushnik I.I. et al Technology of Glueing Components in Aircraft Making. Moscow: Mashinostroenie, 1998 (in Russian).Google Scholar
  5. 5.
    Mikheev I.I. et al Technology of Glueing Components. Moscow: Mashinostroenie, 1965 (in Russian).Google Scholar
  6. 6.
    Zeving R. (ed.). New Technological Processes in Precise Instrument Making, 1993 (in Russian).Google Scholar
  7. 7.
    Lopatko A.P., Nikiforova Z.V. New Methods of Welding and Soldering (Collected Volume), Moscow, 1979, p. 88 (in Russian).Google Scholar
  8. 8.
    Lyubimov M.L. Joints of Metal with Glass. Moscow: Energiya, 1988 (in Russian).Google Scholar
  9. 9.
    Patent of France 2173673Google Scholar
  10. 10.
    Patent of France 2234661Google Scholar
  11. 11.
    Petrushenko. I.E. (ed.). Soldering Reference Book. Moscow: Mashinostroenie, 2003 (in Russian).Google Scholar
  12. 12.
    Dobrovinskaya E.R., Kozhushko G.M., Litvinov L.A. et al. Svetotekhnika. 4, 1979, 8–9 (in Russian)Google Scholar
  13. 13.
    Patent of Great Britain 1365403Google Scholar
  14. 14.
    Delmon V. Kinetics of Heterogeneous Reactions. Moscow: Mir, 1972 (in Russian).Google Scholar
  15. 15.
    Gleston S., Laidler K., Airing G. Theory of Absolute Reaction Rates. Moscow: Inostrannaya literatura, 1948, 240pp (in Russian).Google Scholar
  16. 16.
    Ya V. Kinetic Theory of Phase Transformations. Moscow: Metallurgiya, 1973 (in Russian).Google Scholar
  17. 17.
    Diffusion Welding of Titanium: Reference Book. Moscow: Metallurgiya, 1977, pp. 18–28 (in Russian)Google Scholar
  18. 18.
    Shorshorov M.Kh., Krasulin Yu.L. Welding Engineering. 12, 1967, p. 1 (in Russian).Google Scholar
  19. 19.
    Krasulin Yu.L. Solid-Phase Interaction of Metal with Semiconductor. Moscow: Nauka, 1971 (in Russian).Google Scholar
  20. 20.
    Kazakov I.F., Krivoshey A.V., Studenkov E.G. USSR Inventor’s Certificate 178658. A Method of Diffusion Welding of Materials, 1976.Google Scholar
  21. 21.
    Karakozov E.S., Ternovskiy A.P., Zamidchenko S.S., Tarlavskiy V.E. USSR Inventor’s Certificate 617209 A Method of Pressure Welding of Different Materials, 1978.Google Scholar
  22. 22.
    Sergeev A.V., Kazakov I.F. USSR Inventor’s Certificate 880669 A Method of Diffusion Welding of Different Materials, 1981.Google Scholar
  23. 23.
    Kazakov N.F. Diffusion Welding of Materials. Moscow: Mashinostroenie, 1976, p. 312 
(in Russian).Google Scholar
  24. 24.
    Regel V.R. Stepantsov E.A. Influence of External Factors on Real Structure of Ferro- and Antiferroelectrics (Collected Volume). Russia: Chernologolovka, 1981. p. 50 (in Russian).Google Scholar
  25. 25.
    Stepantsov E.A., Regel V. R. Ferroelectric Crystals in Different Fields (Collected Volume), Leningrad, 1031, pp. 17–23 (in Russian).Google Scholar
  26. 26.
    Regel V. R., Stepantsov E.A. Growth of Semiconductor Crystals and Films (Collected Volume), Novosibirsk, 1984, Part 2, pp. 44–48 (in Russian).Google Scholar
  27. 27.
    Dobrovinskaya E.R., Pishchik V.V. Growth of Crystals from the Melt. Yerevan: Armenian Academy of Sciences, 1985, pp. 96–97 (in Russian).Google Scholar
  28. 28.
    Dobrovinskaya E.R., Pishchik V.V. Izvestiya AN SSSR. Ser. fiz. 49(12), 1985, pp.
 2386–2389 (in Russian).Google Scholar
  29. 29.
    Bagdasarov Kh.S., Dobrovinskaya E.R., Litvinov L.A., Pishchik V.V. Izvestiya AN SSSR. Ser. Fiz. 37, 1973, pp. 2362–2366 (in Russian).Google Scholar
  30. 30.
    Dobrovinskaya E.R., Zvyagintseva I.F., Litvinov L.A., Pishchik V.V. Izvestiya AN SSSR. Ser. Fiz. 49(12), 1985, pp. 2390–2392 (in Russian).Google Scholar
  31. 31.
    Dobrovinskaya E. R., Zvyagintseva I.F., Litvinov L.A., Pishchik V.V. Capillary and Adhesive Properties of Melts (Collected Volume), Kiev. 1987, pp. 140–143 (in Russian)Google Scholar
  32. 32.
    Axelson, et al. USA Patent No 6,012,303.Google Scholar
  33. 33.
    Patent of Great Britain 2132050Google Scholar
  34. 34.
    Patent of Japan 58–47947Google Scholar
  35. 35.
    Dobrovinskaya E.R., Litvinov L.A., Pishchik V.V. Patent USSR No. 1315199. Method of Diffusion Welding of Single Crystals of a Corundum, 1987.Google Scholar
  36. 36.
    USSR Inventor’s Certificate 544 36 58. 22.08.95Google Scholar
  37. 37.
    USSR Inventor’s Certificate 173 417. 21.07.65Google Scholar
  38. 38.
    Inventor’s Certificate of Russian Federation 2131798. 20.06.99Google Scholar
  39. 39.
    Achievements and Prospects of Diffusion Welding (Collected Volume), Moscow. 1987. p.170 (in Russian).Google Scholar
  40. 40.
    Axelson, et al. United States Patent. 6,012,303, 11 January 2000.Google Scholar
  41. 41.
    McGuire P., Pazof B., Gentilmarf R., Askinazi J., Lochef J. Large Area Edge-Bonded Flat and Curved Sapphire Windows. Proceedings of SPIE AeroSense Symposium, Orlando, FL, 16 April 2001.Google Scholar
  42. 42.
    Gentilman R. et al. High Strength Edge-Bonded Sapphire Windows, vol. 3705, SPIE, Orlando, FL, 5–6 April 1999, p. 282.Google Scholar
  43. 43.
    Patent of Great Britain 2132050 B 23 K 19/00.Google Scholar
  44. 44.
    USA Patent 6,012,303, 11 January 2000.Google Scholar
  45. 45.
    Lyushinskiy A.V. Diffusion Welding of Different Materials. Moscow: Academiya, 2006, 208pp.Google Scholar
  46. 46.
    Lewinsohn C.A., Colombo P., Reimanis I., Ünal O. J.Am. Ceram. Soc.. 84(10), 2001, 
p. 2240.Google Scholar
  47. 47.
    Ahmed A., Siores E. J. Mater. Process. Technol. 118, 2001, 88–95.CrossRefGoogle Scholar
  48. 48.
    Stores E., DoRego D. J.Mater. Process. Technol. 48, 1995, 619–625.CrossRefGoogle Scholar
  49. 49.
    Beale G.O., Li M. Robust Temperature Control for Microwave Heating of Ceramics. IEEE Trans. Industr. Electron. 44(1), February 1997, pp. 124–131.CrossRefGoogle Scholar
  50. 50.
    Dobrovinskaya E.R., Pishchik V.V. Corundum Single Crystals. Problems of Growth and Quality. Moscow. 1988, Part 1, 74p; Part 2, 62 p. (in Russian).Google Scholar
  51. 51.
    Aravindan S., Krishnamurthy R. Mater. Lett. 38, 1999,245–249.CrossRefGoogle Scholar
  52. 52.
    Beale G.O. Controller Robustness Analysis for Microwave Heating of Ceramics. Proceedings of Korema ‘96, Opatija, Croatia, 18–20 September 1996, pp. 13–16.Google Scholar
  53. 53.
    Li M., Beale G.O., Tian Y.L. Automatic Control During Microwave Heating of Ceramics. Proceedings of Microwaves: Theory and Application in Materials Processing III, American Ceramic Society, Cincinnati, May 1995.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Elena R. Dobrovinskaya
    • 1
  • Leonid A. Lytvynov
    • 2
  • Valerian Pishchik
    • 3
  1. 1.Rubicon TechnologyFranklin ParkUSA
  2. 2.Scientific Technological ComplexInstitute for Single CrystalsKharkovUkraine
  3. 3.Gavish, Ltd.Sapphire ProductsOmerIsrael

Personalised recommendations