Skip to main content

Methods for Obtaining Complex Monolithic Sapphire Units and Large-Size Crystals

  • Chapter
  • First Online:
Sapphire

Abstract

The present-day state of crystal growth technologies makes it possible to obtain sapphire products of rather large size and complex configuration. However, demand has arisen for super-large sapphire crystals and complex single-piece units, which cannot be grown in practice but must be assembled from separate components. In addition, sapphire-metallic and sapphire-ceramic joints are demanded, the main requirements for which include vacuum, electrical, and mechanical strength, high transparency, wear resistance, chemical stability, and so forth.

Naturally, the opportunity to increase the size of grown crystals is limited. In the next few years, there clearly will be a rise of some 10–15%. However, the growth of these crystals may turn out to be economically inexpedient. So, a search has begun for new technologies yielding large-size crystals and units based on the fabrication of single-piece joints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pat. USA 3390019, MKJ B23K 15/00

    Google Scholar 

  2. Pat. USA 3518400, MKJ B23K 15/00

    Google Scholar 

  3. Pat. USA 4263495, MKJ B23K 27/00

    Google Scholar 

  4. Kapelyushnik I.I. et al Technology of Glueing Components in Aircraft Making. Moscow: Mashinostroenie, 1998 (in Russian).

    Google Scholar 

  5. Mikheev I.I. et al Technology of Glueing Components. Moscow: Mashinostroenie, 1965 (in Russian).

    Google Scholar 

  6. Zeving R. (ed.). New Technological Processes in Precise Instrument Making, 1993 (in Russian).

    Google Scholar 

  7. Lopatko A.P., Nikiforova Z.V. New Methods of Welding and Soldering (Collected Volume), Moscow, 1979, p. 88 (in Russian).

    Google Scholar 

  8. Lyubimov M.L. Joints of Metal with Glass. Moscow: Energiya, 1988 (in Russian).

    Google Scholar 

  9. Patent of France 2173673

    Google Scholar 

  10. Patent of France 2234661

    Google Scholar 

  11. Petrushenko. I.E. (ed.). Soldering Reference Book. Moscow: Mashinostroenie, 2003 (in Russian).

    Google Scholar 

  12. Dobrovinskaya E.R., Kozhushko G.M., Litvinov L.A. et al. Svetotekhnika. 4, 1979, 8–9 (in Russian)

    Google Scholar 

  13. Patent of Great Britain 1365403

    Google Scholar 

  14. Delmon V. Kinetics of Heterogeneous Reactions. Moscow: Mir, 1972 (in Russian).

    Google Scholar 

  15. Gleston S., Laidler K., Airing G. Theory of Absolute Reaction Rates. Moscow: Inostrannaya literatura, 1948, 240pp (in Russian).

    Google Scholar 

  16. Ya V. Kinetic Theory of Phase Transformations. Moscow: Metallurgiya, 1973 (in Russian).

    Google Scholar 

  17. Diffusion Welding of Titanium: Reference Book. Moscow: Metallurgiya, 1977, pp. 18–28 (in Russian)

    Google Scholar 

  18. Shorshorov M.Kh., Krasulin Yu.L. Welding Engineering. 12, 1967, p. 1 (in Russian).

    Google Scholar 

  19. Krasulin Yu.L. Solid-Phase Interaction of Metal with Semiconductor. Moscow: Nauka, 1971 (in Russian).

    Google Scholar 

  20. Kazakov I.F., Krivoshey A.V., Studenkov E.G. USSR Inventor’s Certificate 178658. A Method of Diffusion Welding of Materials, 1976.

    Google Scholar 

  21. Karakozov E.S., Ternovskiy A.P., Zamidchenko S.S., Tarlavskiy V.E. USSR Inventor’s Certificate 617209 A Method of Pressure Welding of Different Materials, 1978.

    Google Scholar 

  22. Sergeev A.V., Kazakov I.F. USSR Inventor’s Certificate 880669 A Method of Diffusion Welding of Different Materials, 1981.

    Google Scholar 

  23. Kazakov N.F. Diffusion Welding of Materials. Moscow: Mashinostroenie, 1976, p. 312 
(in Russian).

    Google Scholar 

  24. Regel V.R. Stepantsov E.A. Influence of External Factors on Real Structure of Ferro- and Antiferroelectrics (Collected Volume). Russia: Chernologolovka, 1981. p. 50 (in Russian).

    Google Scholar 

  25. Stepantsov E.A., Regel V. R. Ferroelectric Crystals in Different Fields (Collected Volume), Leningrad, 1031, pp. 17–23 (in Russian).

    Google Scholar 

  26. Regel V. R., Stepantsov E.A. Growth of Semiconductor Crystals and Films (Collected Volume), Novosibirsk, 1984, Part 2, pp. 44–48 (in Russian).

    Google Scholar 

  27. Dobrovinskaya E.R., Pishchik V.V. Growth of Crystals from the Melt. Yerevan: Armenian Academy of Sciences, 1985, pp. 96–97 (in Russian).

    Google Scholar 

  28. Dobrovinskaya E.R., Pishchik V.V. Izvestiya AN SSSR. Ser. fiz. 49(12), 1985, pp.
 2386–2389 (in Russian).

    CAS  Google Scholar 

  29. Bagdasarov Kh.S., Dobrovinskaya E.R., Litvinov L.A., Pishchik V.V. Izvestiya AN SSSR. Ser. Fiz. 37, 1973, pp. 2362–2366 (in Russian).

    CAS  Google Scholar 

  30. Dobrovinskaya E.R., Zvyagintseva I.F., Litvinov L.A., Pishchik V.V. Izvestiya AN SSSR. Ser. Fiz. 49(12), 1985, pp. 2390–2392 (in Russian).

    CAS  Google Scholar 

  31. Dobrovinskaya E. R., Zvyagintseva I.F., Litvinov L.A., Pishchik V.V. Capillary and Adhesive Properties of Melts (Collected Volume), Kiev. 1987, pp. 140–143 (in Russian)

    Google Scholar 

  32. Axelson, et al. USA Patent No 6,012,303.

    Google Scholar 

  33. Patent of Great Britain 2132050

    Google Scholar 

  34. Patent of Japan 58–47947

    Google Scholar 

  35. Dobrovinskaya E.R., Litvinov L.A., Pishchik V.V. Patent USSR No. 1315199. Method of Diffusion Welding of Single Crystals of a Corundum, 1987.

    Google Scholar 

  36. USSR Inventor’s Certificate 544 36 58. 22.08.95

    Google Scholar 

  37. USSR Inventor’s Certificate 173 417. 21.07.65

    Google Scholar 

  38. Inventor’s Certificate of Russian Federation 2131798. 20.06.99

    Google Scholar 

  39. Achievements and Prospects of Diffusion Welding (Collected Volume), Moscow. 1987. p.170 (in Russian).

    Google Scholar 

  40. Axelson, et al. United States Patent. 6,012,303, 11 January 2000.

    Google Scholar 

  41. McGuire P., Pazof B., Gentilmarf R., Askinazi J., Lochef J. Large Area Edge-Bonded Flat and Curved Sapphire Windows. Proceedings of SPIE AeroSense Symposium, Orlando, FL, 16 April 2001.

    Google Scholar 

  42. Gentilman R. et al. High Strength Edge-Bonded Sapphire Windows, vol. 3705, SPIE, Orlando, FL, 5–6 April 1999, p. 282.

    Google Scholar 

  43. Patent of Great Britain 2132050 B 23 K 19/00.

    Google Scholar 

  44. USA Patent 6,012,303, 11 January 2000.

    Google Scholar 

  45. Lyushinskiy A.V. Diffusion Welding of Different Materials. Moscow: Academiya, 2006, 208pp.

    Google Scholar 

  46. Lewinsohn C.A., Colombo P., Reimanis I., Ünal O. J.Am. Ceram. Soc.. 84(10), 2001, 
p. 2240.

    CAS  Google Scholar 

  47. Ahmed A., Siores E. J. Mater. Process. Technol. 118, 2001, 88–95.

    Article  CAS  Google Scholar 

  48. Stores E., DoRego D. J.Mater. Process. Technol. 48, 1995, 619–625.

    Article  Google Scholar 

  49. Beale G.O., Li M. Robust Temperature Control for Microwave Heating of Ceramics. IEEE Trans. Industr. Electron. 44(1), February 1997, pp. 124–131.

    Article  Google Scholar 

  50. Dobrovinskaya E.R., Pishchik V.V. Corundum Single Crystals. Problems of Growth and Quality. Moscow. 1988, Part 1, 74p; Part 2, 62 p. (in Russian).

    Google Scholar 

  51. Aravindan S., Krishnamurthy R. Mater. Lett. 38, 1999,245–249.

    Article  CAS  Google Scholar 

  52. Beale G.O. Controller Robustness Analysis for Microwave Heating of Ceramics. Proceedings of Korema ‘96, Opatija, Croatia, 18–20 September 1996, pp. 13–16.

    Google Scholar 

  53. Li M., Beale G.O., Tian Y.L. Automatic Control During Microwave Heating of Ceramics. Proceedings of Microwaves: Theory and Application in Materials Processing III, American Ceramic Society, Cincinnati, May 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dobrovinskaya, E.R., Lytvynov, L.A., Pishchik, V. (2009). Methods for Obtaining Complex Monolithic Sapphire Units and Large-Size Crystals. In: Sapphire. Micro- and Opto-Electronic Materials, Structures, and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-85695-7_8

Download citation

Publish with us

Policies and ethics