Sapphire pp 1-54 | Cite as

Application of Sapphire

  • Elena R. Dobrovinskaya
  • Leonid A. Lytvynov
  • Valerian Pishchik
Part of the Micro- and Opto-Electronic Materials, Structures, and Systems book series (MOEM)


As far back as the tenth century BC , sapphires and rubies were valued as gems on the level of diamonds. Artificial sapphires were first used in jewelry art as well, but from the beginning of the twentieth century sapphire has played an increasingly significant role in engineering. At present one can hardly find a branch of science or technology where this crystal is not used. Demand for sapphire grows year after year, almost exponentially.

Devices and their components applied in aviation and space industries, in chemical processing, and in many other fields are simultaneously subjected to the action of aggressive media, radiation, high temperatures, pressures, and mechanical loads. Under such extreme conditions any material is prone to intense corrosion and erosion. High-strength alloys have reached the practical limits of their capabilities. The structure of polycrystalline materials and consequently their mechanical properties essentially change under extreme conditions due to recrystallization, corrosion of the grain boundaries, and so forth The rate of diffusion via the grain boundaries grow with increasing temperature, radiation dose, and operation time. As a result, the material breaks down. Such drawbacks are inherent in sapphire components and assemblies to a considerably lesser extent.


Light Guide Friction Pair Deep Trap Aggressive Medium Constructional Material 


  1. 1.
    Dobrovinskaya E., Litvinov L., Pishchik V. Single Crystals of Corundum. Kiev: Naukova dumka, 1994, 256p [in Russian].Google Scholar
  2. 2.
    Dobrovinskaya E., Litvinov L., Pishchik V. Sapphire and Other Corundum Crystals. Kharkiv: Folio. Institute for Single Crystals, 2002, 349pp.Google Scholar
  3. 3.
    Aristoteles Stones, commented by Lucas ben Serapion. Codex Parisiensis 2772, Ch. III.Google Scholar
  4. 4.
    Konevsky V., Lytvynov L., Nguen Hoang Ngy. Funct. Mater. 7, 2000, 552.Google Scholar
  5. 5.
    Schalzried H. J. Phys. Chem. 28, 1961, 203.Google Scholar
  6. 6.
    Krylova G.I., Repina O.V., Munchaev A.I. Abstract of. Ninth National Conference on Crystal Growth, Moscow, 2000, 436 [in Russian].Google Scholar
  7. 7.
    Litvinov L.A. All About a Ruby. Kharkiv: Prapor, 1991, 155p [in Russian].Google Scholar
  8. 9.
    Bykova S.V., Gonnik M.A., Gonnik M.M. Proceedings of Sixth International Conference on Crystal Growth and Mass Transfer. Obninsk. 2005. 180–181 [in Russian].Google Scholar
  9. 10.
    Egorov L.P., Kotelyanskii I.M., Kravchenko V.B. et al. Proceedings of 14th International Conference on Crystal Growth. Moscow. 2004, 182 [in Russian].Google Scholar
  10. 11.
    Wallace J. Laser Focus World. January, 2003, 19–20.Google Scholar
  11. 12.
    Kurlov V.N., Kiiko V.M., Kolchin A.A., Mileiko S.T.J. Cryst. Growth. 204, 1999, 499.CrossRefGoogle Scholar
  12. 13.
    Zhukov L.F., Litvinov L.A., Chugunnyi E.G. Patent USSR. 766237, 1980.Google Scholar
  13. 14.
    Zhukov L.F., Litvinov L.A., Shumikhin V.S. Patent USSR. 1256572, 1984.Google Scholar
  14. 15.
    Ivanina B.M., Litvinov L.A., Priimach B.S., Globus M.E. Patent USSR 1316467, 1985.Google Scholar
  15. 16.
    Ivanina V.M., Konevskii V.S., Litvinov L.A. Patent USSR. 1649859, 1991.Google Scholar
  16. 17.
    Gromova S.N., Dobrovinskaya E.R., Litvinov L.A., Pishchik V.V. Svetotekhnika. 4, 1979, C.8–9.Google Scholar
  17. 18.
    Brailovskii V.B., Gaidukov E.N., Kobzar’ A.I. et al. Proc. of All-Union Conference on Manufacturing of Profiled Crystals. Leningrad, 1989, 113 [in Russian].Google Scholar
  18. 19.
    Nechiporenko E.P., Litvinov L.A., Pavlenko Yu.B. Patent USSR. 1361197, 1987.Google Scholar
  19. 20.
    Shvid’ko Y. et al. Phys. Rev. Lett. 2003, 10.Google Scholar
  20. 21.
    Schewe P., Riordon J., Stein B. Phys. News Update. 1, 2003, 619.Google Scholar
  21. 22.
    Belt R. Synthetic Corundum as X-Ray Monochromator. X-Ray spectrum. 1(N2), 1972, 55–58.Google Scholar
  22. 23.
    Valbis Ya.A., Litvinov L.A., Ryzhikov V.D. Patent USSR. 1410678, 1988.Google Scholar
  23. 24.
    Ryzhikov V.D., Litvinov A.L., Danshin E.A. et al. Materials for Electron Engineering Moscow. 2001, 61–64 [in Russian].Google Scholar
  24. 25.
    Globus M.E., Grinyov B.V. Inorganic Scintillation Crystals. Kharkiv: Akta, 2000, 72 [in Russian].Google Scholar
  25. 26.
    Ryzhikov V.D. et al Voprosy atomnoi nauki i tekhniki. Ser. fizika rad. povrezhd. i rad. materialovedenie. [Problems of Nuclear Science and Engineering: Physics of Radiation Damage and Radiation Materials Science.] 3 (81), 2002, 130–132 [in Russian].Google Scholar
  26. 27.
    Litvinov L.A., Krivonosov E.V., Ryzhikov V.D. et al Voprosy atomnoi nauki i tekhniki. Ser. fizika rad. povrezhd. i rad. materialovedenie. [Problems of Nuclear Science and Engineering: Physics of Radiation Damage and Radiation Materials Science.] 6 (82), 2002, 154–155 [in Russian].Google Scholar
  27. 28.
    Borovkov S.D., Konevskii V.S., Litvinov L.A. et al. Screens for Beam Diagnostics. Preprint IFVE 90–34, 1990 [in Russian].Google Scholar
  28. 29.
    Avakumova L.A. et al Atomnaya Energiya. 69(5), 1990, 309–313 [in Russian].Google Scholar
  29. 30.
    Kortov V.S., Mil’man I.I., Nikiforov S.V., Moiseikin E.V. Fizika tverdogo tela. 48(3), 2006, 421–426 [in Russian].Google Scholar
  30. 31.
    Bessonova T.S., Gimadova T.I., Litvinov L.A. Zh. prikladn. spektrosk. 54, 1991, 433–437 [in Russian].Google Scholar
  31. 31.
    Kortov V.S. et al. Problemy spektroskopii i spektrometrii [Problems of Spectroscopy and Spectrometry] Ekaterinburg, UGTU, 1999, 3–6 [in Russian].Google Scholar
  32. 33.
    Galanciak D., Legowski S., Meczynska., Grinberg M. Funct. Mater. 10, 2003, 212–215.Google Scholar
  33. 34.
    Imbusch G.F. J. Lumin. 53, 1992, 465.Google Scholar
  34. 35.
    Astrom P.C.F., Di Stefano F., Probst et al Phys. Lett. A356, 2006, P.262–266.Google Scholar
  35. 36.
    Booth N., Cabrera B., Fiorini E. Annu. Rev. Nucl. Part. Sci. 46, 1996, 471.CrossRefGoogle Scholar
  36. 37.
    Dashkevich V.I., Tyushkevich B.N. Prib. i tekhn. eksp. 5, 2001, 117–120 [in Russian].Google Scholar
  37. 38.
    Moulton P.F. Optic News. 6, 1982, 9.Google Scholar
  38. 39.
    Sutter D.H., Steinmeyer G., Gallmann L. et al Optics Lett. 24, 1999, 631.CrossRefGoogle Scholar
  39. 40.
    Pashinin V.P. et al Kvantovaya Elektronika. 32(2), 2002, 121–123 [in Russian].CrossRefGoogle Scholar
  40. 41.
    Koishi Yamakawa. Workshop on Technological Bottlenecks in Compact High-Intensity Short Puls Lasers. Paris, April 2003.Google Scholar
  41. 42.
    Morou G. Workshop on Technological Bottlenecks in Compact High-Intensity Short Puls Lasers. Paris. April 2003, 7.Google Scholar
  42. 43.
    Boiko B.B. et al Dokl. AN BSSR. 31, 1987, 982–984 [in Russian]. Google Scholar
  43. 44.
    Kaminskii A.A. et al Fizika i spektroskopiya lazernykh kristallov [Physics and Spectroscopy of Laser Crystals]. Moscow: Nauka, 1986, 261 [in Russian].Google Scholar
  44. 45.
    Martynovich E.F., Tokarev A.G., Grigorov V.A. Optics Commun. 53, 1989, 254–256.Google Scholar
  45. 46.
    Martynovich E.F., Baryshnikov V.I., Grigorov V.A. Optics Commun. 53, 1989, 257–258.Google Scholar
  46. 47.
    Voytovich A.P. et al Sov. J. Quantum Electron. 17, 1987, 561–562.Google Scholar
  47. 48.
    Osiko V.V. Laser Materials. Moscow: Nauka, 2002 [in Russian].Google Scholar
  48. 49.
    Martynovich E.F., Baryshnikov V.I., Grigorov V.A. Pis’ma v JTF. 11, 1985, P.200–202 [in Russian].Google Scholar
  49. 50.
    Litvinov L.A. Izv. AN SSSR. Ser. Fiz. 31, 1988, 1911–1913 [in Russian].Google Scholar
  50. 51.
    Dickens B., Schroeder L.W. J. Res. Nat. Bur.Stand. 85, 1980, 347.Google Scholar
  51. 52.
    Chaplygin G.V. Comprehensive Abstracts of International Conference on Crystal Growth. 1980. Moscow: AN SSSR, 135 [in Russian].Google Scholar
  52. 53.
    Matveeva A.I., Vigdorovich V.A. Stomatologiya. 1, 1992, C.38–40 [in Russian].Google Scholar
  53. 54.
    Streicher R.M. et al. Proc. Int. Congr Fenza. 1991, C.2–5.Google Scholar
  54. 55.
    Korzh A.A., Litvinov L.A., Timchenko I.B. et al. A.s. 1114412, 1983 (SSSR);Patent 16604, 1997 (Ukraine).Google Scholar
  55. 56.
    Korzh A.A., Litvinov L.A., Timchenko I.B. et al. Patent 16596, 1997 (Ukraine).Google Scholar
  56. 57.
    Korzh A.A., Litvinov L.A., Timchenko I.B. et al. Patent 16717, 1997 (Ukraine).Google Scholar
  57. 58.
    Grechko N.B., Litvinov L. A., Kutsevlyak V.I. Application 97126214, favorable action 24.12.97.Google Scholar
  58. 59.
    Kutsevlyak V.I., Ryabokon’ E.N., Litvinov L.A. Bulletin on Problems of Modern Medicine. 9, 1994, C.28–31 [in Russian].Google Scholar
  59. 60.
    Kutsevlyak V.I., Ryabokon’ E.N., Litvinov L.A. Bull. Stomat. 1, 1994, 71–73 [in Russian].Google Scholar
  60. 61.
    Fudjioka-Hirai J. et al Biomed. Mater. Res. 21(7), 1987, 913–920. Google Scholar
  61. 62.
    Ryabokon’ E.N. Abstract of Thesis. Ukrainian Med. Stomatol. Academia. Poltava, 1995 [in Ukraine].Google Scholar
  62. 63.
    Ryabokon’ E.N., Bozhko K.V., Polyakova S.V., Kolpakov S.N., Litvinov L.A. Proceedings of 12th International Conference on Application of Lasers in Medicine and Biology, Kharkiv, 1998. 108–109 [in Ukraine].Google Scholar
  63. 64.
    Kolpakov S.N., Litvinov L.A., Sofienko G.G. Proceedings of 12th International Conference on Application of Lasers in Medicine and Biology, Kharkiv, 1998, C.110–111.Google Scholar
  64. 65.
    Holmes L.M. Laser Focus World. 1989, 140.Google Scholar
  65. 66.
    Kaplianski A., Rozenblaum R.B. Fiz. Tv. Tela. 13M, 1971, 2623 [in Russian].Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Elena R. Dobrovinskaya
    • 1
  • Leonid A. Lytvynov
    • 2
  • Valerian Pishchik
    • 3
  1. 1.Rubicon TechnologyFranklin ParkUSA
  2. 2.Scientific Technological ComplexInstitute for Single CrystalsKharkovUkraine
  3. 3.Gavish, Ltd.Sapphire ProductsOmerIsrael

Personalised recommendations