A Procedure of How to Conduct Research in Transparent Mobile Recommendations

  • Mike Radmacher
Part of the IFIP – The International Federation for Information Processing book series (IFIPAICT, volume 286)


The information overflow of today’s information society can be overcome by the usage of recommender systems. Due to the fact that most recommender systems act as black boxes, trust in a system decrease, especially when a recommendation failed. Recommender systems usually don’t offer any insight into the systems logic and cannot be questioned as it is normal for a recommendation process between humans. Transparency, which is about explaining to the user why a recommendation is made, supports the user in a way of understanding the reasoning behind a recommendation. Within a mobile environment, it is possible to address the user more individualized but transparency needs a completely different way of visualization and interaction. The paper in hand aims at setting up a process model on how to address transparency in mobile recommendations and therefore introduce into a complex new area of research, recommender systems didn’t address in the past.


Recommender System User Feedback Mobile Environment Recommendation Process Accurate Judgment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J.K. Bleicher and K. Hickethier, Aufmerksamkeit, Medien und Ökonomie. Lit, 2002.Google Scholar
  2. 2.
    G. Franck, Ökonomie der Aufmerksamkeit. Carl Hanser, 1998.Google Scholar
  3. 3.
    P. Zipkin, The limits of mass customization, Sloan Management Review 42,3, 2001, pp. 81-87.Google Scholar
  4. 4.
    Q.N. Nguyen and F. Ricci, User Preferences Initialization and Integration in Critique-Based Mobile Recommender Systems, AIMS, Nottingham, UK, 2004.Google Scholar
  5. 5.
    J.A. Konstan, B.N. Miller, D. Maltz, J.L. Herlocker, R. Gordon, E. Prairie and J. Riedl, GroupLens: applying collaborative filtering to Usenet news, Communications of the ACM, Vol.40, No.3, 1997, pp. 77-87.CrossRefGoogle Scholar
  6. 6.
    B.J. Dahlen, J.A. Konstan, J.L. Herlocker, N. Good, A. Borchers and J. Riedl. Jump- starting movielens: User benefits of starting a collaborative filtering system with "dead data", University of Minnesota TR 98-017, 1998.Google Scholar
  7. 7.
    W.C. Hill, L. Stead, M. Rosenstein and G.W. Furnas: Recommending and Evaluating Choices in a Virtual Community of Use, CHI 1995, pp. 194-201.Google Scholar
  8. 8.
    U. Shardanand and P. Maes, Social Information Filtering: Algorithms for Automating "Word of Mouth”, Conference on Human Factors in Computing Systems, 1995.Google Scholar
  9. 9.
    M. Balabanovi and Y. Shoham, Fab: content-based, collaborative recommendation. Communications of the ACM, Vol.40, No.3, 1997, pp. 66-73.CrossRefGoogle Scholar
  10. 10.
    M. Hingston, User Firendly Recommender Systems, University of Sydney, School of Information Technologies, 2006.Google Scholar
  11. 11.
    J.L. Herlocker, J.A. Konstan and J. Riedl, Explaining collaborative filtering recommendations, ACM conference on CSCW, 2001, pp. 241 - 250.Google Scholar
  12. 12.
    R. Sinha, and K. Swearingen, The role of transparency in recommender systems, Conference on Human Factors in Computing Systems, Minneapolis, Minnesota, USA, 2002, pp. 830-831.Google Scholar
  13. 13.
    N. Tintarev and J. Masthoff, A Survey of Explanations in Recommender Systems, Workshop on Recommender Systems and Intelligent User Interfaces associated with ICDE'07, Instanbul, Turkey, 2007.Google Scholar
  14. 14.
    N. Tintarev, Explanations of Recommendations, ACM Recommender Systems, Minneapolis, Minnesota, USA, 2007, pp. 203-206.Google Scholar
  15. 15.
    J. Muramatsu and W. Pratt, Transparent Queries: investigation users' mental models of search engines, ACM SIGIR conference on research and development in information retrieval, New Orleans, Louisiana, United States, 2001, pp. 217 - 224.Google Scholar
  16. 16.
    M. Bilgic R.J. Mooney, Explaining Recommendations: Satisfaction vs. Promotion, Beyond Personalization 2005: A Workshop at the International Conference on Intelligent User Interfaces, San Diego, CA, 2005.Google Scholar
  17. 17.
    S. Figge, Innovatives Mobile Marketing - Kontextabhängige Kundenansprache mit Hilfe mobiler Portale, in Rannenberg, Kai (Hrsg.): Schriften zum Mobile Commerce und zur Mobilkommunikation; Hamburg 2006.Google Scholar
  18. 18.
    A. Albers, An Electronic Market Framework for context-sensitive Mobile Consumer Profiles in the Marketing Domain, AMCIS, Keystone, USA August 2007.Google Scholar
  19. 19.
    M. Radmacher, J. Zibuschka, T. Scherner, L. Fritsch and K. Rannenberg, Privatsphärenfreundliche topozentrische Dienste unter Berücksichtigung rechtlicher, technischer und wirtschaftlicher Restriktionen, WI, Karlsruhe, 2007.Google Scholar
  20. 20.
    J. Zibuschka, L. Fritsch, M. Radmacher, T. Scherner and K. Rannenberg, Privacy-Friendly LBS: A Prototype-supported Case Study, AMCIS, Keystone, USA August 2007.Google Scholar
  21. 21.
    P. Resnick and H.R. Varian, Recommender Systems, Communications of the ACM, Vol.40, No.3, 1997, pp.56-58.CrossRefGoogle Scholar
  22. 22.
    R. van Meteren and M. van Someren, Using Content-Based Filtering for Recommendation, University of Amsterdam, Netherlands, 2000.Google Scholar
  23. 23.
    H. Eui-Hong and G. Karypis: Feature-based recommendation system. CIKM 2005, pp. 446- 452.Google Scholar
  24. 24.
    B. Sarwar, G. Karypis, J. Konstan and J. Riedl, Item-based collaborative filtering recommendation algorithms, 10th international conference on WWW, 2001, pp. 285-295.Google Scholar
  25. 25.
    J. Donaldson, A Hybrid Social-Acoustic Recommendation System for Popular Music, ACM Recommender Systems, Minneapolis, Minnesota, USA, 2007, pp. 187-190.Google Scholar
  26. 26.
    L.M. Quiroga and M. Mostafa, An experiment in building profiles in information filtering: the role of context of user relevance feedback, Information Processing and Management Vol.38, No.5, 2002.Google Scholar
  27. 27.
    X. Fu, Evaluating Sources of Implicit Feedback in Web Search. ACM Recommender Systems, Minneapolis, Minnesota, USA, 2007, pp. 191-194.Google Scholar
  28. 28.
    S. Jung, J.L. Herlocker and J.Webster, Click data as implicit relevance feedback in web search, Inf. Process. Manage. Vol.43, No.3, 2007, pp. 791-807.CrossRefGoogle Scholar
  29. 29.
    P. Pu, User-Involved Preference Elicitation, IJCAI Workshop on Configuration, Gentilly Cedex, France, 2003.Google Scholar
  30. 30.
    K. Swearingen and R. Sinha, Beyond Algorithms: An HCI Perspective on Recommender Systems. SIGIR workshop on Recommender Systems, New Orleans, LA, USA, 2001.Google Scholar
  31. 31.
    M. Radmacher, Elicitation of profile attributes by transparent communication, ACM Recommender Systems, Minneapolis, Minnesota, USA, 2007, pp. 199-202.Google Scholar
  32. 32.
    A.R. Hevner,, Design Science Information Systems Research, MIS Quarterly, Vol.28, No.1, 2004, pp. 75-105.Google Scholar
  33. 33.
    H. Takeda, et. al., Modeling Design Processes, AI Magazine, 1990, pp. 37-48.Google Scholar
  34. 34.
    V. Vaishnavi and B. Kuechler, Design Research in Information Systems, AIS, 2006.Google Scholar
  35. 35.
    M. Radmacher, Adaptive Customer Profiles For Context Aware Services in a Mobile Environment, In IFIP International Federation for Information Processing, Volume 251, Integration and Innovation Orient to E-Society Volume 1, Wang, W. (Eds), (Boston: Springer), pp. 390-399; Wuhan, China.Google Scholar
  36. 36.
    J. Koenemann and N. Belkin, A case for interaction: A study of interactive information retrieval behavior and effectiveness, in Proceedings of the Human Factors in Computing Systems Conference, NY, 1991.Google Scholar
  37. 37.
    S. Maaß, Transparenz. Eine zentrale software-ergonomische Forderung, Report Nr. FBI- HH-B-170/94, Hamburg, 1994.Google Scholar
  38. 38.
    J. Wandmacher, Software-Ergonomie, de Gruyter, Berlin, 1993.Google Scholar
  39. 39.
    S. Bødker, Through the Interface- a Human Activity Approach to User, Interface Design, Dissertation, Aarhus University 1987.Google Scholar
  40. 40.
    D.A., Norman, The Invisible Computer: Why Good Products Can Fail, the Personal Computer is So Complex, and Information Appliances Are the Solution. Cambridge, MIT Press, 1998.Google Scholar
  41. 41.
    M. Fritter, Towards More “Natural” Interactive Systems, International Journal of Man- Machine Studies, 11, 1979, pp. 339-350.CrossRefGoogle Scholar
  42. 42.
    M. Frese, A Theory of Control and Complexity: Implications for Software-Design and Integration of Computer Systems into the Work Place, in: M. Frese, E. Ulich, W. Dzida (Hrsg.), Psychological Issues of HCI in the Work Place. Elsevier Science, Amsterdam, 1987, pp. 313-337.Google Scholar
  43. 43.
    P. Spinas, N. Troy, E. Ulich, Leitfaden zur Einführung und Gestaltung von Arbeit mit Bildschirmsystemen, München, 1983.Google Scholar
  44. 44.
    H. Oberquelle. Situationsbedingte und benutzerorientierte Anpaßbarkeit von Groupware, in A. Hartmann, T. Herrmann, M. Rohde, V. Wulf (Hrsg.), Menschengerechte Groupware - Software-ergonomische Gestaltung und partizipative Umsetzung, Chapter of the ACM, 42, Teubner, Stuttgart, 1994, S. 31-49.Google Scholar
  45. 45.
    S. Maaß, Why Systems Transparency?, in T. R.G. Green, S. J. Payne, G. C. van der Veer (Hrsg.). The Psychology of Computer Use. Academic Press, London, 1983, pp.19-28.Google Scholar
  46. 46.
    N.F. Awad and M.S. Krishnan, The Personalization Privacy Paradox: An Empirical Evaluation Of Information Transparency and the Willingness to be Profiled Online for Personalization, MIS Quarterly, Vol.30, No. 1, 2006, pp.13-28.Google Scholar
  47. 47.
    S. Love, Understanding Mobile Human-Computer Interaction, Butterworth Heinemann, Great Britain, 2005.Google Scholar
  48. 48.
    P. Kotler, and F. Bliemel, Marketing-Management, Schaeffer-Poeschel, Auflage10., überarb. und aktualisierte Aufl, Stuttgart, ISBN: 9783791016894, 2001.Google Scholar
  49. 49.
    O. L. Williamson, Organization Theory: From Chester Barnard to the Present and Beyond, Oxford University Press US, ISBN 0195098307, 1985.Google Scholar
  50. 50.
    T. Ripperger, Ökonomik des Vertrauens - Analyse eines Organisationsprinzips, Mohr Siebeck Verlag Tübingen 1998.Google Scholar
  51. 51.
    P. Resnick and R. Sami, The Influence Limiter: Provably Manipulation-Resistant Recommender Systems, ACM Recommender Systems, Minneapolis, Minnesota, USA, 2007, pp. 17-24.Google Scholar

Copyright information

© International Federation for Information Processing 2008

Authors and Affiliations

  • Mike Radmacher
    • 1
  1. 1.Chair of Mobile Business & Multilateral SecurityFrankfurt am MainGermany

Personalised recommendations