Finsler Structures and Wave Propagation

  • Michael Taylor
Part of the International Mathematical Series book series (IMAT, volume 10)


We discuss connections between the study of wave propagation for general classes of hyperbolic PDEs (beyond the “standard wave equation”) and aspects of Finsler geometry. In particular, we investigate how understanding of the behavior of differential operators (and pseudodifferential operators) arising in such study can enhance one's understanding of Finsler geometry. We also discuss a problem in harmonic analysis motivated by a construction of Katok in Finsler geometry, which gives rise to an interesting variant of the Pinsky phenomenon, for pointwise Fourier inversion.


Principal Symbol Eigenfunction Expansion Beltrami Operator Finsler Geometry Finsler Metrics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brandolini, L., Colzani, L.: Localization and convergence of eigenfunction expansions.J. Fourier Anal. Appl. 5, 431–447 (1999)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Brandolini, L., Colzani, L.: Decay of Fourier transforms and summability of eigen-function expansions. Ann. Scuola Norm. Sup. Pisa 29, 611–638 (2000)MathSciNetGoogle Scholar
  3. 3.
    Duistermaat, J.J., Guillemin, V.: The spectrum of positive elliptic operators and periodic bicharacteristics. Invent. Math. 29, 39–79 (1975)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators. Vols. 3–4. Springer-Verlag, New York (1985)Google Scholar
  5. 5.
    Katok, A.B.: Ergodic perturbations of degenerate integrable Hamiltonian systems (in Russian). Izv. Akad. Nauk SSSR, Ser. Mat. 37, 539–576 (1973); English transl.:Math. USSR Izv. 7, 535–571 (1974)MathSciNetGoogle Scholar
  6. 6.
    Miron, R., Hrimiuc, D., Shimada, H., Sabau, S.: The Geometry of Hamilton and Lagrange Spaces. Kluwer, Boston (2001)MATHGoogle Scholar
  7. 7.
    Pinsky, M., Taylor, M.: Pointwise Fourier inversion: a wave equation approach. J.Fourier Anal. Appl. 3, 647–703 (1997)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Sogge, C.: Fourier Integrals in Classical Analysis. Cambridge Univ. Press, Cambrdige (1993)MATHGoogle Scholar
  9. 9.
    Taylor, M.: Pseudodifferential Operators. Princeton Univ. Press, Princeton, NJ (1981)MATHGoogle Scholar
  10. 10.
    Taylor, M.: Partial Differential Equations. Vols. 1–3. Springer-Verlag, New York (1996)Google Scholar
  11. 11.
    Taylor, M.: Eigenfunction expansions and the Pinsky phenomenon on compact manifolds. J. Fourier Anal. Appl. 7, 507–522 (2001)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Taylor, M.: The Gibbs phenomenon, the Pinsky phenomenon, and variants for eigen-function expansions. Commun. Parital Differ. Equ. 27, 565–605 (2002)MATHCrossRefGoogle Scholar
  13. 13.
    Ziller, W.: Geometry of the Katok examples. Ergod. Theor. Dyn. Sys. 3, 135–157 (1982)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.University of North CarolinaChapel HillUSA

Personalised recommendations