Skip to main content

The Ginzburg-Landau Equations for Superconductivity with Random Fluctuations

  • Chapter
Sobolev Spaces in Mathematics III

Part of the book series: International Mathematical Series ((IMAT,volume 10))

Thermal fluctuations and material inhomogeneities have a large effect on superconducting phenomena, possibly inducing transitions to the non-superconducting state. To gain a better understanding of these effects, the Ginzburg—Landau model is studied in situations for which the described physical processes are subject to uncertainty. An adequate description of such processes is possible with the help of stochastic partial differential equations. The boundary value problem of Neumann type for the stochastic Ginzburg—Landau equations with additive and multiplicative white noise is investigated. We use white noise with minimal restriction on its independence property. The existence and uniqueness of weak and strong statistical solutions are proved. Our approach is based on using difference schemes for the Ginzburg— Landau equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bardeen, J., Cooper, L., Schrieffer, J.: Theory of superconductivity. Phys. Rev. 108,1175–1204 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bensoussan, A., Temam, R.: Equations aux derivees partielle stochastiques non lin-earies (1) Isr. J. Math. 11, 95–129 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bensoussan, A., Temam, R.: Equations stochastiques du type Navier—Stokes. J. Funct.Ana. 13, 195–222 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chapman, J., Du, Q., Gunzburger, M.: A Ginzburg—Landau type model of superconducting/normal junctions including Josephson junctions. Europ. J. Appl. Math.6,97–114 (1995)

    MATH  MathSciNet  Google Scholar 

  5. Chapman, J., Du, Q., Gunzburger, M.: A model for variable thickness superconducting thin films. Z. Angew. Math. Phys. 47, 410–431 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chapman, J., Du, Q., Gunzburger, M., Peterson, J.: Simplified Ginzburg—Landau type models of superconductivity in the high kappa, high field limit. Adv. Math. Sci. Appl.5, 193–218 (1995)

    MATH  MathSciNet  Google Scholar 

  7. Chapman, J., Howinson, S., Ockendon, J.: Macroscopic models for superconductivity.SIAM Review 34, 529–560 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Daletskii, Yu.: Infinite dimensional elliptic operators and connected with them parabolic equations (in Russian). Uspekhi Mat. Nauk 22, 3–54 (1967)

    Google Scholar 

  9. Deang, J., Du, Q., Gunzburger, M.: Stochastic dynamics of Ginzburg—Landau vortices in superconductors. Phys. Rev. B 64, 052506 (2001)

    Article  Google Scholar 

  10. Deang, J., Du, Q., Gunzburger, M.: Modeling and computation of random thermal fluctuations and material defects in the Ginzburg—Landau model for superconductivity.J. Comput. Phys. 181, 45–67 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dorsey, A., Huang, M., Fisher M.: Dynamics of the normal to superconducting vortex-glass transition: Mean-field theory and fluctuations. Phys. Rev. B 45, 523–526 (1992)

    Article  Google Scholar 

  12. Du, Q., Gray, P.: High-kappa limit of the time dependent GinzburgLandau model for superconductivity. SIAM J. Appl. Math. 56, 1060–1093 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Du, Q., Gunzburger, M., Peterson, J.: Analysis and approximation of the GinzburgLandau model of superconductivity. SIAM Review 34, 54–81 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. E, W., Mattingly, J., Sinai, Y.: Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation. Commun. Math. Phys. 224, 83–106 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Filippov, A., Radievsky, A., Zelster, A.: Nucleation at the fluctuation induced first order phase transition to superconductivity. Phy. Lett. A 192, 131–136 (1994)

    Article  Google Scholar 

  16. Flandoli, F., Maslowski, B.: Ergodicity of the 2D Navier-Stokes equation under random perturbations. Commun. Math. Phys. 172., 119–141 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Fursikov, A.: Optimal Control of Distributed Systems. Theory and Applications. Am.Math. Soc, Providence, RI (1999)

    Google Scholar 

  18. Gikhman, I., Skorokhod, A.: Introduction to the Theory of Random Processes. Dover,New York (1969)

    Google Scholar 

  19. Gikhman, I., Skorokhod, A.: The Theory of Stochastic Processes. Springer, Berlin (1974)

    MATH  Google Scholar 

  20. Ginzburg, V., Landau, L.: On the theory of superconductivity (in Russian). Zh.Eksperim. Teor. Fiz. 20, 1064–1082 (1950); English transl.: In: ter Haar, D. (ed.) Men of Physics: L. D. Landau, pp. 138–167. Pergamon, Oxford (1965)

    Google Scholar 

  21. Gor–kov, L.: Microscopic derivation of the Ginzburg—Landau equations in the theory of superconductivity (in Russian). Zh. Eksperim. Teor. Fiz. 36, 1918-1923 (1959); English transl.: Sov. Phys.—JETP 9, 1364–1367 (1959)

    Google Scholar 

  22. Hohenberg, P., Halperin, B.: Theory of dynamic critical phenomena. Rev. Mod. Phy.49, 435–479 (1977)

    Article  Google Scholar 

  23. Kamppeter, T., Mertens, F., Moro, E., Sanchez, A., Bishop, A.: Stochastic vortex dynamics in two-dimensional easy-plane ferromagnets: Multiplicative versus additive noise. Phys. Rev. B 59, pp.11 349–11 357 (1991)

    Google Scholar 

  24. Krylov, N.: Introduction to the Theory of Diffusion Processes. Am. Math. Soc, Providence, RI (1996)

    Google Scholar 

  25. Krylov, N.: SPDEs in L q((0, t], L p) spaces. Electron. J. Probab. 5, 1–29 (2000)

    MathSciNet  Google Scholar 

  26. Krylov, N.: Introduction to the Theory of Random Processes. Am. Math. Soc, Providence, RI(2002)

    Google Scholar 

  27. Krylov, N., Rozovskii, B.: Stochastic evolution equation. J. Sov. Math. 16, 1233–1277 (1981)

    Article  MATH  Google Scholar 

  28. Kuksin, S.: Randomly Forced Nonlinear PDEs and Statistical Hydrodynamics in 2 Space Dimensions. Zurich Lectures in Advanced Mathematics, European Math. Soc (EMS), Zurich (2006)

    Google Scholar 

  29. Kuksin, S., Shirikyan, A.: Stochastic dissipative PDE's and Gibbs measures. Commun.Math. Phys. 213, 291–330 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Larkin, A.: Effect of inhomogeneities on the structure of the mixed state of superconductors. Sov. Phys. JETP 31, 784–786 (1970)

    Google Scholar 

  31. Lions, J.-L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications I. Dunod, Paris (1968)

    Google Scholar 

  32. Mikulevicius, R., Rozovskii, B.: Stochastic Navier—Stokes Equations for Turbulent Flows. Preprint (2003)

    Google Scholar 

  33. Pardoux, E.: Sur le equations aux derivees partielles stochastiques monotones. C. R.Acad. Sci. 275, A101–A103 (1972)

    MathSciNet  Google Scholar 

  34. Rozovskii, B.: Stochastic evolution systems. Kluwer, Dordrecht (1990)

    MATH  Google Scholar 

  35. Sasik, R., Bettencourt, L., Habib, S.: Thermal vortex motion in a two-dimensional condensate. Phys. Rev. B 62, 1238–1243 (2000)

    Article  Google Scholar 

  36. Shirikyan, A.: Ergodicity for a class of Markov processes and applications to randomly forced PDE's. I. Russ. J. Math. Phys. 12, 81–96 (2005)

    MATH  MathSciNet  Google Scholar 

  37. Shirikyan, A.: Ergodicity for a class of Markov processes and applications to randomly forced PDE's II. Discrete Contin. Dyn. Syst. Ser. B6, 911–926 (2006)

    MATH  MathSciNet  Google Scholar 

  38. Shirikyan, A.: Exponential mixing for randomly forced PDE's: method of coupling.In: Bardos, C., Fursikov, A. Eds. Instability of Models Connected with Fluid Flows II,pp. 155–188. Springer, New York (2008)

    Chapter  Google Scholar 

  39. Skocpol, W., Tinkham, M.: Fluctuations near superconducting phase transitions. Rep.Progr. Phys. 38, 1049–1097 (1975)

    Article  Google Scholar 

  40. Sobolev, S.L.: Some Applications of Functional Analysis in Mathematical Physics (in Russian). 1st ed. Leningrad State Univ., Leningrad (1950); 3rd ed. Nauka, Moscow (1988); English transl. of the 1st Ed.: Am. Math. Soc., Providence, RI (1963); English transl. of the 3rd Ed. with comments by V. P. Palamodov: Am. Math. Soc., Providence,I (1991)

    Google Scholar 

  41. Tinkham, M.: Introduction to Superconductivity. McGraw-Hill, New York (1975)

    Google Scholar 

  42. Troy, R., Dorsey, A.: Transport properties and fluctuations in type-II superconductors near Hc2. Phys. Rev. B 47, 2715–2724 (1993)

    Article  Google Scholar 

  43. Ullah, S., Dorsey, A.: The effect of fluctuations on the transport properties of type-II superconductors in a magnetic field. Phys. Rev. B 44, 262–273 (1991)

    Article  Google Scholar 

  44. Vishik, M., Fursikov, A.: Mathematical Problems of Statistical Hydromechanics.Kluwer, Boston (1988)

    MATH  Google Scholar 

  45. Vishik, M., Komech, A,: On solvability of the Cauchy problem for the direct Kol-mogorov equation corresponding to the stochastic Navier—Stokes type equation (in Russian). In: Complex Analysis and its Applications, pp. 126–136. Nauka, Moscow (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrei Fursikov , Max Gunzburger or Janet Peterson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fursikov, A., Gunzburger, M., Peterson, J. (2009). The Ginzburg-Landau Equations for Superconductivity with Random Fluctuations. In: Isakov, V. (eds) Sobolev Spaces in Mathematics III. International Mathematical Series, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85652-0_2

Download citation

Publish with us

Policies and ethics