Advertisement

Variational Approach to Complicated Similarity Solutions of Higher Order Nonlinear Evolution Partial Differential Equations

  • Victor Galaktionov
  • Enzo Mitidieri
  • Stanislav Pokhozhaev
Part of the International Mathematical Series book series (IMAT, volume 9)

Abstract

We consider the Cauchy problem for three higher order degenerate quasilinear partial differential equations, as basic models,
$$\eqalign{ & u_t {\rm{ = ( - 1)}}^{m{\rm{ + 1}}} \Delta ^m {\rm{(|}}u{\rm{|}}^n u{\rm{) + |}}u{\rm{|}}^n u{\rm{,}} \cr & u_{tt} {\rm{ = ( - 1)}}^{m{\rm{ + 1}}} \Delta ^m {\rm{(|}}u{\rm{|}}^n u{\rm{) + |}}u{\rm{|}}^n u{\rm{,}} \cr & u_t {\rm{ = ( - 1)}}^{m{\rm{ + 1}}} \left[ {\Delta ^m {\rm{(|}}u{\rm{|}}^n u{\rm{)}}} \right]x_1 {\rm{ + }}\left( {{\rm{|}}u{\rm{|}}^n u} \right)x_1 \cr}$$
where (x,t) ϵ RN × R+, n > 0, and Δ m is the (m ≥ 1)th iteration of the Laplacian. Based on the blow-up similarity and travelling wave solutions, we investigate general local, global, and blow-up properties of such equations. The nonexistence of global in time solutions is established by different methods. In particular, for m = 2 and m = 3 such similarity patterns lead to the semilinear 4th and 6th order elliptic partial differential equations with noncoercive operators and non-Lipschitz nonlinearities
$${\rm{ - }}\Delta ^{\rm{2}} F{\rm{ + }}F{\rm{ - |}}F{\rm| }^{\rm - {n \over {n{\rm{ + 1}}}}}{\rm{ }}F{\rm{ = 0\ and\ }}\Delta ^{\rm{3}} F{\rm{ + }}F{\rm{ - |}}F{\rm |}^{\rm - {n \over {n{\rm{ + 1}}}}}{\rm{ }}F{\rm{ = 0\ in\ R}}^N$$
(1)
which were not addressed in the mathematical literature. Using analytic variational, qualitative, and numerical methods, we prove that Eqs. (1) admit an infinite at least countable set of countable families of compactly supported solutions that are oscillatory near finite interfaces. This shows typical properties of a set of solutions of chaotic structure.

Keywords

Periodic Solution Periodic Orbit Travel Wave Solution Countable Family Nonlinear Dispersion Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bahri, A., Berestycki, H.: A perturbation method in critical point theory and applications. Trans. Am. Math. Soc. ,267, 1–32 (1981)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bahri, A., Lions, P.L.: Morse index in some min—max critical points. I. Application to multiplicity results. Commun. Pure Appl. Math. 41, no. 8, 1027–1037 (1988)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Berger, M.: Nonlinearity and Functional Analysis. Acad. Press, New York (1977)MATHGoogle Scholar
  4. 4.
    Boggio, T.: Sull'equilibrio delle piastre elastiche incastrate. Rend. Acc. Lincei 10, 197–205 (1901)Google Scholar
  5. 5.
    Boggio, T.: Sulle funzioni di Green d'ordine m. Rend. Circ. Mat. Palermo 20, 97–135 (1905)MATHCrossRefGoogle Scholar
  6. 6.
    Brezis, H., Brawder, F.: Partial Differential Equations in the 20th Century. Adv. Math.,135, 76–144 (1998)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Clark, D.C.: A variant of Lusternik—Schnirelman theory. Indiana Univ. Math. J. 22,65–74 (1972)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Coddington, E.A.: Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill Book Company, Inc., New York—London (1955)MATHGoogle Scholar
  9. 9.
    Deimling, K.: Nonlinear Functional Analysis. Springer-Verlag, Berlin—Tokyo (1985)MATHGoogle Scholar
  10. 10.
    Evans, J.D., Galaktionov, V.A., King, J.R.: Source-type solutions of the fourth order unstable thin film equation. Euro J. Appl. Math. 18, 273–321 (2007)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Evans, J.D., Galaktionov, V.A., King, J.R.: Unstable sixth order thin film equation.I. Blow-up similarity solutions; II. Global similarity patterns. Nonlinearity 20, 1799–1841, 1843–1881 (2007)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Galaktionov, V.A.: On interfaces and oscillatory solutions of higher order semilinear parabolic equations with nonlipschitz nonlinearities. Stud. Appl. Math. 117, 353–389 (2006)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Galaktionov, V.A., Harwin, P.J.: Non-uniqueness and global similarity solutions for a higher order semilinear parabolic equation. Nonlinearity 18, 717–746 (2005)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Galaktionov, V.A., Pohozaev (Pokhozhaev), S.I.: On shock, rarefaction waves, and compactons for odd order nonlinear dispersion PDEs. Comput. Math. Math. Phys.[To appear]Google Scholar
  15. 15.
    Galaktionov, V.A., Svirshchevskii, S.R.: Exact Solutions and Invariant Sub-spaces of Nonlinear Partial Differential Equations in Mechanics and Physics.Chapman & Hall/CRC, Boca Raton, Florida (2007)Google Scholar
  16. 16.
    Hale, J.K.: Asymptotic Behavior of Dissipative Systems. Am. Math. Soc., Providence,RI (1988)Google Scholar
  17. 17.
    Kalies, W.D., Kwapisz, J., VandenBerg, J.B., VanderVorst, R.C.A.M.: Homotopy classes for stable periodic and chaotic patterns in fourth order Hamiltonian systems.Commun. Math. Phys. 214, 573–592 (2000)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Kawamoto, S.: An exact transformation from the Harry Dym equation to the modified KdV equation. J. Phys. Soc. Japan 54, 2055–2056 (1985)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Krasnosel'skii, M. A.: Topological Methods in the Theory of Nonlinear Integral Equations. Pergamon Press, Oxford—Paris (1964)Google Scholar
  20. 20.
    Krasnosel'skii, M. A., Zabreiko, P.P.: Geometrical Methods of Nonlinear Analysis.Springer-Verlag, Berlin—Tokyo (1984)Google Scholar
  21. 21.
    Lions, J.L.: Quelques Méthodes de Résolution des Problémes aux Limites non Linéaires. Dunod, Gauthier—Villars, Paris (1969)MATHGoogle Scholar
  22. 22.
    Maz'ya, V.G.: Sobolev Spaces. Springer-Verlag, Berlin—Tokyo (1985)Google Scholar
  23. 23.
    Mitidieri, E., Pohozaev (Pokhozhaev), S.I.: Apriori Estimates and Blow-up of Solutions to Nonlinear Partial Differential Equations and Inequalities. Proc. Steklov Inst. Math.234, Intern. Acad. Publ. Comp. Nauka/Interperiodica, Moscow (2001)Google Scholar
  24. 24.
    Peletier, L.A., Troy, W.C.: Spatial Patterns: Higher Order Models in Physics and Mechanics. Birkhäuser, Boston—Berlin (2001)MATHGoogle Scholar
  25. 25.
    Pohozaev (Pokhozhaev), S.I.: On an approach to nonlinear equations. Sov. Math.,Dokl. 20, 912–916 (1979)MATHGoogle Scholar
  26. 26.
    Pohozaev (Pokhozhaev), S.I.: The fibering method in nonlinear variational problems.Pitman Research Notes in Math. 365, 35–88 (1997)Google Scholar
  27. 27.
    Rabinowitz, P.: Variational methods for nonlinear eigenvalue problems. In: Eigenvalue of Nonlinear Problems, pp. 141–195. Edizioni Cremonese, Rome (1974)Google Scholar
  28. 28.
    Rosenau, P.: Nonlinear dispertion and compact structures. Phys. Rev. Lett. 73, 1737–1741 (1994)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Rosenau, P.: On solitons, compactons, and Lagrange maps. Phys. Lett. A 211, 265–275(1996)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Rosenau, P.: Compact and noncompact dispersive patterns. Phys. Lett. A, 275, 193–203 (2000)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Rosenau, P., Hyman, J.M.: Compactons: solitons with finite wavelength. Phys. Rev.Lett. 7., 564–567 (1993)CrossRefGoogle Scholar
  32. 32.
    Samarskii, A.A., Galaktionov, V.A., Kurdyumov, S.P., Mikhailov, A.P.: Blow-up in Quasilinear Parabolic Equations. Walter de Gruyter, Berlin—New York (1995)MATHGoogle Scholar
  33. 33.
    Samarskii, A.A., Zmitrenko, N.V., Kurdyumov, S.P., Mikhailov, A.P.: Thermal structures and fundamental length in a medium with nonlinear heat conduction and volumetric heat sources. Sov. Phys., Dokl. 21, 141–143 (1976)Google Scholar
  34. 34.
    Shishkov, A.E.: Dead cores and instantaneous compactification of the supports of energy solutions of quasilinear parabolic equations of arbitrary order. Sbornik: Math.190, 1843–1869 (1999)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Sobolev, S.L.: Some Applications of Functional Analysis in Mathematical Physics (Russian). 1st ed. Leningrad State Univ., Leningrad (1950); 3rd ed. Nauka, Moscow (1988); English transl. of the 1st Ed.: Am. Math. Soc., Providence, RI (1963); English transl. of the 3rd Ed. with comments by V. P. Palamodov: Am. Math. Soc., Providence, RI (1991)Google Scholar
  36. 36.
    Van Den Berg J.B., Vandervorst, R.C.: Stable patterns for fourth order parabolic equations. Duke Math. J. 115, 513–558 (2002)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Victor Galaktionov
    • 1
  • Enzo Mitidieri
    • 2
  • Stanislav Pokhozhaev
    • 3
  1. 1.University of BathBathUK
  2. 2.Università di TriesteItaly
  3. 3.Steklov Mathematical InstituteRussia

Personalised recommendations