Advertisement

Function Spaces on Cellular Domains

  • Hans Triebel
Part of the International Mathematical Series book series (IMAT, volume 9)

Abstract

A Lipschitz domain in Rn is called cel lular if it is the finite union of diffeomorphic images of cubes. Bounded C∞ domains and cubes are prototypes. The paper deals with spaces of type B s pq and F s pq (including Sobolev spaces and Besov spaces) on these domains. Special attention is paid to traces on (maybe nonsmooth) boundaries and wavelet bases.

Keywords

Sobolev Space Function Space Sequence Space Besov Space Lipschitz Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Besov, O.V., Il'in, V.P., Nikol'skij, S.M.: Integral Representations of Functions and Embedding Theorems (Russian). Nauka, Moskva (1975); Second ed. (1996); English transl.: Wiley, New York (1978/79)Google Scholar
  2. 2.
    Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Regional Conf. Series Appl.Math. SIAM, Philadelphia (1992)Google Scholar
  3. 3.
    Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93, 34–170 (1990)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)MATHGoogle Scholar
  5. 5.
    Grisvard, P.: Singularities in Boundary Value Problems. Springer, Berlin (1992)MATHGoogle Scholar
  6. 6.
    Meyer, Y.: Wavelets and Operators. Cambridge Univ. Press, Cambridge (1992)MATHGoogle Scholar
  7. 7.
    Nikol'skij, S.M.: Approximation of Functions of Several Variables and Embedding Theorems (Russian). Nauka, Moskva (1969); Second ed. (1977); English transl.: Springer,Berlin (1975)Google Scholar
  8. 8.
    Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Differential Equations. W. de Gruyter, Berlin (1996)Google Scholar
  9. 9.
    Sobolev, S.L.: Some Applications of Functional Analysis in Mathematical Physics (Russian). 1st ed. Leningrad State Univ., Leningrad (1950); 3rd ed. Nauka, Moscow(1988); German transl.: Einige Anwendungen der Funktionalanalysis auf Gleichungen der mathematischen Physik. Akademie-Verlag, Berlin (1964); English transl. of the 1st Ed.: Am. Math. Soc., Providence, RI (1963); English transl. of the 3rd Ed. with comments by V. P. Palamodov: Am. Math. Soc., Providence, RI (1991)Google Scholar
  10. 10.
    Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978); Second ed. Barth, Heidelberg (1995)Google Scholar
  11. 11.
    Triebel, H.: Theory of Function Spaces. Birkhäuser, Basel (1983)Google Scholar
  12. 12.
    Triebel, H.: Theory of Function Spaces II. Birkhäuser, Basel (1992)MATHGoogle Scholar
  13. 13.
    Triebel, H.: The Structure of Functions. Birkhäuser, Basel (2001)MATHGoogle Scholar
  14. 14.
    Triebel, H.: Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers. Rev. Mat. Complutense 15, 475–524 (2002)MATHMathSciNetGoogle Scholar
  15. 15.
    Triebel, H.: Theory of Function Spaces III. Birkhäuser, Basel (2006)MATHGoogle Scholar
  16. 16.
    Triebel, H.: Function Spaces and Wavelets on Domains. European Math. Soc. Publishing House, Zürich (2008) [To appear]MATHGoogle Scholar
  17. 17.
    Triebel, H.: Wavelets in Function Spaces. [Submitted]Google Scholar
  18. 18.
    Wojtaszczyk, P.: A mathematical Introduction to Wavelets. Cambridge Univ. Press,Cambridge (1997)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Mathematisches InstitutFriedrich-Schiller-Universität JenaGermany

Personalised recommendations