Advertisement

Counting Schrödinger Boundstates: Semiclassics and Beyond

  • Grigori Rozenblum
  • Michael Solomyak
Part of the International Mathematical Series book series (IMAT, volume 9)

Abstract

This is a survey of the basic results on the behavior of the num ber of the eigenvalues of a Schrödinger operator, lying below its essential spectrum. We discuss both fast decaying potentials, for which this behavior is semiclassical, and slowly decaying potentials, for which the semiclassical rules are violated.

Keywords

Quadratic Form Potential Versus Heat Kernel Asymptotic Formula Essential Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birman, M.Sh., Laptev, A.: The negative discrete spectrum of a two-dimensional Schrödinger operator. Commun. Pure Appl. Math. 49, no. 9, 967–997 (1996).MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Birman, M.Sh., Laptev, A., Suslina, T.: The discrete spectrum of a two-dimensional second order periodic elliptic operator perturbed by a decreasing potential. I. A semi infinite gap (Russian). Algebra Anal. 12, no. 4, 36–78 (2000); English transl.: St. Petersbg. Math. J. 12, no. 4, 535–567 (2001).MathSciNetGoogle Scholar
  3. 3.
    Birman, M.Sh., Solomyak, M.: Quantitative Analysis in Sobolev Imbedding Theorems and Applications to Spectral Theory (Russian). Tenth Mathem. School, Izd. Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev, 5–189 (1974); English transl.: Am. Math. Soc., Providence, RI (1980).Google Scholar
  4. 4.
    Birman, M.Sh., Solomyak, M.: Estimates for the number of negative eigenvalues of the Schrödinger operator and its generalizations. Adv. Sov. Math. 7, 1–55 (1991)MathSciNetGoogle Scholar
  5. 5.
    Birman, M.Sh., Solomyak, M.: On the negative discrete spectrum of a periodic elliptic operator in a waveguide-type domain, perturbed by a decaying potential. J. Anal. Math. 83, 337–391 (2001)MATHMathSciNetGoogle Scholar
  6. 6.
    Cwikel, M.: Weak type estimates for singular values and the number of bound states of Schrödinger operators. Ann. Math. (2) 106, no. 1, 93–100 (1977)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge Univ. Press, Cambridge (1989)MATHGoogle Scholar
  8. 8.
    Ekholm, T., Frank, R., Kovarik, H.: Eigenvalue Estimates for Schrödinger Operators on Metric Trees. arXive:0710.5500.Google Scholar
  9. 9.
    Egorov, Yu.V., Kondrat'ev, V.A.: On the estimation of the number of points of the negative spectrum of the Schrödinger operator (Russian). Mat. Sb. 134, no. 4, 556–570 (1987); English transl.: Math. USSR-Sb. 62, no. 2, 551–566 (1989)Google Scholar
  10. 10.
    Fefferman, C: The uncertainty principle. Bull. Am. Math. Soc. 9, no. 2, 129–206 (1983)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Frank, R., Lieb, E., Seiringer, R.: Hardy-Lieb-Thirring Inequalities for Fractional Schrödinger Operators. arXive:0610.5593.Google Scholar
  12. 12.
    Grigor'yan, A.: Heat kernels and function theory on metric measure spaces. In: Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), pp. 143–172. Am. Math. Soc, Providence, RI (2003)Google Scholar
  13. 13.
    Laptev, A.: The negative spectrum of the class of two-dimensional Schrödinger oper ators with potentials that depend on the radius (Russian). Funkt. Anal. Prilozh. 34, no. 4, 85–87 (2000); English transl.: Funct. Anal. Appl. 34, no. 4, 305–307 (2000)MathSciNetGoogle Scholar
  14. 14.
    Laptev, A., Netrusov, Yu.: On the negative eigenvalues of a class of Schrödinger operators. In: Differential Operators and Spectral Theory, pp. 173–186. Am. Math. Soc, Providence, RI (1999)Google Scholar
  15. 15.
    Laptev, A., Weidl, T.: Recent Results on Lieb-Thirring Inequalities. J. “Équat. Deriv. Partielles” (La Chapelle sur Erdre, 2000), Exp. no. 20, Univ. Nantes, Nantes (2000)Google Scholar
  16. 16.
    Levin, D., Solomyak, M.: The Rozenblum-Lieb-Cwikel inequality for Markov gener ators. J. Anal. Math. 71, 173–193 (1997)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Li, P., Yau, S.-T.: On the Schrödinger equation and the eigenvalue problem. Commun. Math. Phys. 88, no. 3, 309–318 (1983)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Lieb, E.: The number of bound states of one-body Schrödinger operators and the Weyl problem. Bull. Am. Math. Soc. 82, 751–753 (1976)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Maz'ya, V.G.: Sobolev Spaces. Springer-Verlag, Berlin-Tokyo (1985)Google Scholar
  20. 20.
    Naimark, K., Solomyak, M.: Regular and pathological eigenvalue behavior for the equation −λu″= Vuon the semiaxis. J. Funct. Anal. 151, no. 2, 504–530 (1997)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press, New York-London (1978)MATHGoogle Scholar
  22. 22.
    Rozenblum, G.: Distribution of the discrete spectrum of singular differential operators (Russian). Dokl. Akad. Nauk SSSR 202, 1012–1015 (1972); English transl.: Sov. Math., Dokl. 13245–249 (1972)MathSciNetGoogle Scholar
  23. 23.
    Rozenblum, G.: Distribution of the discrete spectrum of singular differential operators (Russian). Izv. VUZ, Ser. Mat. no. 1(164), 75–86 (1976); English transl.: Sov. Math., Izv. VUZ 20no 1, 63–71 (1976)Google Scholar
  24. 24.
    Rozenblum, G., Solomyak, M.: The Cwikel-Lieb-Rozenblum estimates for generators of positive semigroups and semigroups dominated by positive semigroups (Russian). Algebra Anal. 9 , no. 6, 214–236 (1997); English transl.: St. Petersbg. Math. J. 9, no. 6, 1195–1211 (1998)Google Scholar
  25. 25.
    Solomyak, M.: Piecewise-polynomial approximation of functions from Hl((0,1)d), 2l= d,and applications to the spectral theory of the Schrödinger operator. Israel J. Math. 86, no. 1–3, 253–275 (1994)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Varopoulos, N.Th., Saloff-Coste, L., Coulhon, T.: Analysis and Geometry on Groups. Cambridge Univ. Press, Cambridge (1992)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Chalmers University of Technology and The University of GothenburgGothenburgSweden
  2. 2.The Weizmann Institute of Science RehovotIsrael

Personalised recommendations